Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Mo-doped SnS_2 with enriched S-vacancies for highly efficient electrocatalytic N_2 reduction: the critical role of Mo-Sn-Sn trimer

Ke Chu*, Jing Wang, Ya-ping Liu, Qing-qing Li, Ya-li Guo

School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

*Corresponding author. E-mail address: chukelut@163.com (K. Chu)

Experimental

Synthesis of Mo-SnS₂/CC

All the chemicals were used as received without further purification. In brief, a piece of carbon cloth (CC, 2 cm \times 4 cm) was ultrasonically treated in concentrated HCl for 2 h, and cleaned with ethanol and distilled water several times. Then, 0.18 mM of thioacetamide and 0.09 mM of SnCl₄·5H₂O were dissolved in 30 mL of deionized water under stirring for 10 min, followed by addition of 0.001 mM of (NH₄)₆Mo₇O₂₄·4H₂O under stirring for another 10 min. The mixed solution was transferred into a Teflon-lined stainless-steel autoclave, followed by immersing the pretreated CC in the solution. The autoclave was sealed and maintained at 180 °C for 24 h. After cooling to room temperature, the obtained Mo-SnS₂/CC was washed with deionized water and ethanol several times, and dried at 60 °C overnight. For comparison, the pristine SnS₂/CC was prepared by the same procedure without addition of (NH₄)₆Mo₇O₂₄·4H₂O.

Electrochemical measurements

Electrochemical measurements were tested on a CHI-660E electrochemical workstation in a three-electrode configuration including working electrode (CC sample), reference electrode (Ag/AgCl), and counter electrode (graphite rod). All potentials were referenced to the reversible hydrogen electrode (RHE). The RHE calibration was experimentally conducted in the high-purity hydrogen saturated 0.5 M LiClO₄ electrolyte by cyclic voltammeters curves, with using graphite rod and Pt wire as counter and working electrodes, respectively (Fig. S2). The NRR tests were conducted in an H-type two-compartment electrochemical cell separated by a Nafion 211 membrane. An absorber was set at the end of cell to avoid the loss of produced NH₃ by N₂ flow. The Nafion membrane was pretreated by boiling it in 5% H₂O₂ solution for 1 h, 0.5 M H₂SO₄ for 1 h and deionized water for 1 h in turn. During each electrolysis, ultra-high-purity N₂ gas (99.999%) was continuously purged into the cathodic chamber at a flow rate of 20 mL min⁻¹. After each NRR electrolysis, the solution in absorber was poured back into the cathodic compartment for the NH₃

detection. The produced NH_3 and possible N_2H_4 were quantitatively determined by the indophenol blue method[1], and approach of Watt and Chrisp[2], respectively.

Determination of NH₃

Typically, 4 mL of electrolyte was removed from the electrochemical reaction vessel. Then 50 μ L of solution containing NaOH (0.75 M) and NaClO ($\rho_{Cl} = ~4.5$), 500 μ L of solution containing 0.32 M NaOH, 0.4 M C₇H₆O₃Na, and 50 μ L of C₅FeN₆Na₂O solution (1 wt%) were respectively added into the electrolyte. After standing for 2 h, the UV-Vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard NH₄Cl solution with a serious of concentrations.

NH₃ yield was calculated by the following equation:

NH₃ yield (
$$\mu$$
g h⁻¹ mg⁻¹_{cat}) = $\frac{c_{\rm NH_3} \times V}{t \times m}$ (1)

Faradaic efficiency was calculated by the following equation:

Faradaic efficiency (%) =
$$\frac{3 \times F \times c_{\text{NH}_3} \times V}{17 \times Q} \times 100\%$$
 (2)

where c_{NH3} (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time and m (mg) is the mass loading of the catalyst on CC. F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the quantity of applied electricity.

Determination of N_2H_4

Typically, 5 mL of electrolyte was removed from the electrochemical reaction vessel. The 330 mL of color reagent containing 300 mL of ethyl alcohol, 5.99 g of $C_9H_{11}NO$ and 30 mL of HCl were prepared, and 5 mL of color reagent was added into the electrolyte. After stirring for 10 min, the UV-vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard N_2H_4 solution with a serious of concentrations.

Characterizations

X-ray diffraction (XRD) pattern was recorded on a Rigaku D/max 2400 diffractometer. X-ray photoelectron spectroscopy (XPS) analysis

was performed on a PHI 5702 spectrometer. Scanning electron microscopy (SEM) was carried out on a JSM-6701 microscope. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM) were performed on a Tecnai G² F20 microscope. Electron paramagnetic resonance (EPR) measurements were performed on a Bruker ESP-300 spectrometer. Ion chromatogram measurements were conducted on a Dionex ICS-2000 ion chromatographs. ¹H nuclear magnetic resonance (NRM) measurements were performed on a 500 MHz Bruker superconducting-magnet NMR spectrometer. Prior to NMR measurements, ¹⁴N₂ or ¹⁵N₂ feed gas was purified by an acid trap (0.05 M H₂SO₄) to eliminate the potential NO_x and NH₃ contaminants.

Calculation details

Spin-polarized density functional theory (DFT) calculations were performed sequential using Cambridge total energy package (CASTEP)[3]. The Perdew-Burke-Ernzerh of (PBE) of generalized gradient approximation (GGA) was used for the exchange-correlation potential. DFT-D method was employed to calculate the van der Waals (vdW) interaction. A Gamma-point centered 3×3×1 kmesh was adopted for structural optimizations, and a plane wave cutoff was set to 500 eV. Energy and force was not reach convergence until lower to 1×10⁻⁵ eV and 0.02 eV/Å, respectively. SnS₂ (001) was modeled by a 4×4 supercell, and a vacuum space of around 15 Å was set along the z direction to avoid the interaction between periodical images.

The computational hydrogen electrode (CHE) model was used to calculate the Gibbs free energy change (ΔG) of reaction steps:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_{\rm u} + \Delta G_{\rm pH}$$
(3)

where ΔE is the electronic energy difference, ΔZPE is the zero point energy difference, *T* is the room temperature (298 K) and ΔS is the entropy change. ΔG_U is the contribution of electrode potential, which can be calculated by: $\Delta G_U = -eU$, where and *U* is the applied potential. ΔG_{pH} is the free energy correction of pH, which can be

calculated by: $\Delta G_{pH} = -k_BT \times pH \times \ln 10$, where k_B is the Boltzmann constant, and the value of pH was set to be 7 for neutral medium used in our work. The transition state of water dissociation was analyzed by a combined linear synchronous transit (LST) and quadratic synchronous transit (QST) tools.

The formation energy (E_f) of SnS₂ containing Mo-dopant and V_s (Mo-SnS₂-V_s) can be calculated as:

$$E_{\rm f}({\rm Mo-SnS_2-V_s}) = E({\rm Mo-SnS_2-V_s}) - E({\rm SnS_2}) - \mu_{\rm Mo} + \mu_{\rm Sn} + \mu_{\rm s}$$
(4)

where E is the total energies of corresponding structures, μ is the chemical potential of corresponding atoms.

Fig. S1. Charge density distributions of (a) pristine SnS_2 and (b) Mo- SnS_2 - V_s . Red and cyan regions correspond to the electron accumulation and depletion, respectively.

Fig. S2. Average potential profiles along c-axis direction for calculating the work functions of (a) SnS_2 and (b) Mo-SnS₂-V_s.

Fig. S3. Photograph of H-type electrochemical setup.

Fig. S4. The RHE calibration in 0.5 M LiClO₄ electrolyte.

The RHE calibration was conducted in the high-purity hydrogen saturated 0.5 M LiClO₄ electrolyte. The graphite rod and Pt wire were used as the counter and working electrodes, respectively. The cyclic voltammetry curves were performed at a scan rate of 1 mV s⁻¹. The RHE calibration potential for the hydrogen oxidation/evolution reactions is the average value of the two potentials at which the current crosses zero. It is shown in Fig. S4 that the E(RHE) is larger than E(Ag/AgCl) by 0.561 V. Therefore, we have E(RHE) = E(Ag/AgCl) +0.561.

Fig. S5. (a) UV-Vis absorption spectra of indophenol assays with NH_4Cl after incubated for 2 h at ambient conditions. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S6. (a) UV-Vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S7. (a) UV-Vis spectra of the electrolytes (stained with the chemical indicator based on the method of Watt and Chrisp) after 2 h electrocatalysis on Mo-SnS₂/CC at various potentials, and (b) corresponding N_2H_4 concentrations in the electrolytes.

Fig. S8. UV-Vis absorption spectra of working electrolytes after 2 h of electrolysis on Mo-SnS₂/CC at -0.5 V in N₂-saturated solution, Ar-saturated solutions, N₂-saturated solution at open circuit, N₂-saturated solution on pristine CC and blank data.

Fig. S9. (a) UV-Vis absorption spectra of the electrolytes after electrolysis at various times on Mo-SnS₂/CC at -0.5 V, and (b) corresponding mass of produced NH_3 .

Fig. S10. (a) Ion chromatogram (IC) analysis of the $\rm NH_4^+$ ions at different concentrations (inset), and (b) corresponding calibration curve of $\rm NH_4^+$ concentration $\rm V_{s}$. peak area.

Fig. S11. Electrochemical double-layer capacitance (C_{dl}) measurements at different scanning rates of 10~40 mV s⁻¹ for (a, b) SnS₂/CC and (c, d) Mo-SnS₂/CC.

Fig. S12. Electrochemical impendence spectra of SnS_2/CC and $Mo-SnS_2/CC$.

Fig. S13. UV-Vis absorption spectra of working electrolytes on $Mo-SnS_2/CC$ (each for 2 h electrolysis at -0.5 V) for seven cycles.

Fig. S14. Morphology of Mo-SnS $_2$ /CC after stability test. (a) SEM. (b) TEM.

Fig. S15. XRD pattern of Mo-SnS₂/CC after stability test.

Fig. S16. XPS spectra of Mo-SnS₂ nanosheets scraped down from CC after stability test: (a) Mo3d; (b) Sn3d; (c) S2p.

Fig. S17. Differential charge densities of Mo-Sn-Sn trimer after N_2 adsorption. Red and cyan regions correspond to the electron accumulation and depletion, respectively.

Fig. S18. Mulliken charge analysis of Mo-Sn-Sn trimer before (black) and after (red) N_2 adsorption.

Fig. S19. Optimized structures of consecutive NRR intermediates over $Mo-SnS_2-V_s$.

Fig. S20. Optimized structures of enzymatic NRR intermediates over $Mo-SnS_2-V_s$.

Fig. S21. Free energy diagrams of $*N_2$ and *N-*NH adsorption on Mo-SnS₂-V_s with (pristine) and without considering the effects of surface charge (adding one charge e⁻) and hydrogen bonding (adding two H₂O molecules).

Catalyst	Electrolyte	Determination method	Optimum Potential (V Vs RHE)	NH ₃ yield rate	FE (%)	Ref
Black phosphorus	0.01 M HCl	Indophenol blue method	-0.7	31.37 µg h ⁻¹ mg ⁻¹	5.07 (-0.6)	[4]
MoO ₂ /graphene	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.35	$37.4 \ \mu g \ h^{-1} \ m g^{-1}$	6.6	[5]
Fe ₂ O ₃ nanorod	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.8	15.9 μg h ⁻¹ mg ⁻¹	0.94	[6]
Fe/Fe ₃ O ₄	0.1 M PBS	Indophenol blue method	-0.3	0.19 μg cm ⁻² h ⁻¹	8.29	[7]
S-doped carbon nanospheres	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.7	$19.07 \ \mu g \ h^{-1} \ m g^{-1}$	7.47	[8]
N-doped porous carbon	0.05 M H ₂ SO ₄	Nessler's reagent method	-0.9	1.4 mmol g ⁻¹ h ⁻¹	1.42	[9]
N-doped porous carbon	1.0 M HCl	Indophenol blue method	-0.3	9 μg cm ⁻² h ⁻¹	5.2	[10]
Defective rich C_3N_4	0.1 M HCl	Indophenol blue method	-0.2	8.09 μg h ⁻¹ mg ⁻¹	11.59	[11]
B-doped graphene	0.05 M H ₂ SO ₄	Indophenol blue method	-0.5	9.8 μg cm ⁻² h ⁻¹	10.8	[12]
Sulfur dots- graphene nanohybrid	0.5 M LiClO ₄	Indophenol blue method	-0.85	$28.56\ \mu g\ h^{-1}\ m g^{-1}$	7.07	[13]
Sulfur-doped graphene	0.1 M HCl	Indophenol blue method	-0.6	27.3 $\mu g h^{-1} m g^{-1}$	11.5 (-0.5V)	[14]
Cr ₂ O ₃ /RGO	0.1 M HCl	Indophenol blue method	-0.6	33.3 $\mu g h^{-1} m g^{-1}$	7.33	[15]
Boron-doped TiO ₂	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.8	14.4 µg h ⁻¹ mg ⁻¹	3.4	[16]
La ₂ O ₃ nanoplate	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.8	17.04 μg h ⁻¹ mg ⁻¹	4.76	[17]
Y ₂ O ₃ Nanosheet	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.9	1.06×10^{-10} mol s ⁻¹ cm ⁻²	2.53	[18]
Defective TiO ₂	0.1 M HCl	Indophenol blue method	-0.15	1.24×10^{-10} mol s ⁻¹ cm ⁻²	9.17	[19]
B ₄ C nanosheet	0.1 M HCl	Indophenol blue method	-0.75	26.57 µg h ⁻¹ mg ⁻¹	15.95	[20]
MoS ₂ nanosheet	0.1 M	Indophenol blue	-0.5	8.08×10^{-11}	1 17	[21]

Table S1. Comparison of optimum NH₃ yield and Faradic efficiency (FE) for recently reported state-of-the-art NRR electrocatalysts at ambient conditions

	Na_2SO_4	method		mol s ⁻¹ cm ⁻²		
Defect-rich MoS ₂ nanoflower	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.4	29.28 $\mu g h^{-1} m g^{-1}$	8.34	[22]
Au-TiO ₂ sub- nanocluster	0.1 M HCl	Indophenol blue method	-0.2	21.4 $\mu g h^{-1} m g^{-1}$	8.11	[23]
Au nanorods	0.1 M KOH	Nessler's reagent method	-0.2	1.65 μg cm ⁻² h ⁻¹	4.02	[24]
Mo ₂ C/C	0.5 M Li ₂ SO ₄	Nessler's reagent method	-0.3	11.3 μg h ⁻¹ mg ⁻¹	7.8	[25]
MXene	0.5 M Li ₂ SO ₄	Nessler's reagent method	-0.1	4.7 μg cm ⁻² h ⁻¹	5.78	[26]
Mosaic Bi nanosheets	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.8	13.23 μg h ⁻¹ mg ⁻¹	10.46	[27]
Fe-N/C hybrid	0.1 М КОН	Indophenol blue method	-0.2	34.83 µg h ⁻¹ mg ⁻¹	9.28	[28]
α -Fe nanorods	[C4mpyr] [eFAP]	Indophenol blue method	-0.23	2.35×10^{-11} mol s ⁻¹ cm ⁻²	32	[29]
Amorphous Sn/crystalline SnS ₂ nanosheets	0.1 M PBS	Indophenol blue method	-0.8	23.8 $\mu g h^{-1} m g^{-1}$	6.5 (-0.7V)	[30]
SnS ₂ nanoarray on Ni foam	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.5	9.3×10^{-10} mol s ⁻¹ cm ⁻²	11.2	[31]
Mo-SnS ₂ /CC	0.5 M LiClO ₄	Indophenol blue method	-0.5	41.3 $\mu g h^{-1} m g^{-1}$	20.8 (-0.4V)	This wor k

	\triangle ZPE (eV)	$T\Delta S$ (eV)
*N-*N	0.22	0.09
*N-*NH	0.46	0.13
*NH-*NH	0.85	0.12
*NH-*NH ₂	1.18	1.08
*NH ₂ -*NH ₂	1.45	0.15
*NH2	0.76	0.05
*N-*NH ₂	0.83	0.15
*N	0.09	0.05
*NH	0.4	0.05
N_2	0.15	0.6
H ₂	0.27	0.4
NH ₃	0.89	0.74

Table S2. Calculated ZPE and T ΔS energies of various NRR intermediates over MoSnS₂

Supplementary references

- [1]. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Nat. Mater., 2013, 12, 836.
- [2]. G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- [3]. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567-570.
- [4]. L. L. Zhang, L. X. Ding, G. F. Chen, X. F. Yang and H. H. Wang, Angew. Chem. Int. Edit., 2019, 131, 2638-2642.
- [5]. J. Wang, Y. P. Liu, H. Zhang, D. J. Huang and K. Chu, *Catal. Sci. Technol.*, 2019, 9, 4248-4254.
- [6]. X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, *ChemCatChem*, 2018, 10, 4530-4535.
- [7]. L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, ACS Catal., 2018, 8, 9312-9319.
- [8]. L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, Small Methods, 2018, 3, 1800251.
- [9]. Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186-1191.
- [10]. H. Wang, L. Wang, Q. Wang, S. Ye, W. Sun, Y. Shao, Z. Jiang, Q. Qiao, Y. Zhu and P. Song, Angew. Chem. Int. Edit., 2018, 57, 12360-12364.
- [11]. C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, *Angew. Chem. Int. Edit.*, 2018, 57, 10246-10250.
- [12]. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma and G. Zheng, *Joule*, 2018, 2, 1610-1622.
- [13]. H. Chen, X. Zhu, H. Huang, H. Wang, T. Wang, R. Zhao, H. Zheng, A. M. Asiri, Y. Luo and X. Sun, *Chem. Commun.*, 2019, 55, 3152-3155.
- [14]. L. Xia, J. Yang, H. Wang, R. Zhao, H. Chen, W. Fang, A. M. Asiri, F. Xie, G. Cui and X. Sun, *Chem. Commun.*, 2019, 55, 3371-3374.
- [15]. L. Xia, B. Li, Y. Zhang, R. Zhang, L. Ji, H. Chen, G. Cui, H. Zheng, X. Sun, F. Xie and Q. Liu, *Inorg. Chem.*, 2019, 58, 2257-2260.
- [16]. Y. Wang, K. Jia, Q. Pan, Y. Xu, Q. Liu, G. Cui, X.-D. Guo and X. Sun, ACS Sustain. Chem. Eng., 2018.
- [17]. B. Xu, Z. Liu, W. Qiu, Q. Liu, X. Sun, G. Cui, Y. Wu and X. Xiong, *Electrochim. Acta*, 2018, 298, 106-111.
- [18]. X. Li, L. Li, X. Ren, D. Wu, Y. Zhang, H. Ma, X. Sun, B. Du, Q. Wei and B. Li, *Ind. Eng. Chem. Res.*, 2018, 57, 16622-16627.
- [19]. L. Yang, T. Wu, R. Zhang, H. Zhou, L. Xia, X. Shi, H. Zheng, Y. Zhang and X. Sun, *Nanoscale*, 2019, 11, 1555-1562.
- [20]. W. Qiu, X.-Y. Xie, J. Qiu, W.-H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri and G. Cui, *Nat. Commun.*, 2018, 9, 3485.
- [21]. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- [22]. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri and L. Chen, Adv. Energy. Mater., 2018, 8, 1801357.
- [23]. M. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan and Q. Jiang, *Adv. Mater.*, 2017, 29, 1606550.

- [24]. D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M. Yan, Q. Jiang and X.
 B. Zhang, *Adv. Mater.*, 2017, 29, 1604799.
- [25]. H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue and H. Wang, Adv. Mater., 2018, 30, 1803694.
- [26]. Y. R. Luo, G. F. Chen, L. Ding, X. Z. Chen, L. X. Ding and H. H. Wang, *Joule*, 2019, 3, 279-289.
- [27]. L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng and S.-Z. Qiao, ACS Catal., 2019, 9, 2902-2908.
- [28]. Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng and C. Wang, ACS Catal., 2018, 9, 336-344.
- [29]. B. H. Suryanto, C. S. Kang, D. Wang, C. Xiao, F. Zhou, L. M. Azofra, L. Cavallo, X. Zhang and D. R. MacFarlane, ACS Energy Lett., 2018, 3, 1219-1224.
- [30]. P. Li, W. Fu, P. Zhuang, Y. Cao, C. Tang, A. B. Watson, P. Dong, J. Shen and M. Ye, *Small*, 2019, 15, 1902535.
- [31]. X. Chen, Y.-T. Liu, C. Ma, J. Yu and B. Ding, J. Mater. Chem. A, 2019, 7, 22235-22241.