Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Nanofilament array embedded tungsten oxide for highly efficient electrochromic supercapacitor electrodes

Jongmin Kim,^a Akbar I. Inamdar ,^a Yongcheol Jo,^a Sangeun Cho,^a Abu Talha Aqueel Ahmed,^a Bo Hou,^b SeungNam Cha,^c Tae Geun Kim,^d Hyungsang Kim^{*, a} & Hyunsik Im^{*, a}

- ^b Department of Engineering Science, University of Cambridge, Cambridge, CB2 1TN, UK
- ^c Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- ^d Department of Electrical Engineering, Korea University, Seoul 02841, South Korea
- * Corresponding authors: hskim@dongguk.edu, hyunsik7@dongguk.edu

^a Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

Fig. S1 Top-view field-emission scanning electron microscopy (FE-SEM) images for (a) the pristine WO₃ and (b) NFA-embedded WO₃ films. (c) Cross-sectional FE-SEM image of the WO₃ film. FE-SEM image showing the thickness of the WO₃ film. (d) Rutherford backscattering spectroscopy (RBS) profiles of the WO₃ film. (e) SAED patterns measured after the electroforming process.

Fig. S2 XPS spectra for O1s peaks in (a) the pristine WO₃ and (b) NFA-embedded WO₃ films.

Fig. S3 Two-probe *I-V* characteristics with contacts the WO₃ film and the conducting ITO substrate. (a, b) The measured *I-V* curves for the pristine WO₃ and NFA-embedded WO₃ electrodes. The insets show magnified views of the *I-V* curves. (c, d) The resistance as a function of the point number at 0.1 V read voltage. The resistance ratio between the pristine WO₃ and NFA-embedded WO₃ electrodes more than 6 orders of magnitude.

Fig. S4 (a) Distribution of electroforming voltage for the NFA-embedded WO₃ electrode. The inset shows the electroforming voltage. (b) Retention characteristic of the NFA-embedded WO₃ electrode at room temperature and 0.1 V read voltage with almost stable current value. (c) Cycling performance for 10000 cycles at a scan rate of 150 mV s⁻¹. (d) Determination of the *b*-value at scan rates from 5 to 100 mV s⁻¹.

Fig. S5 (a) Photograph showing the asymmetric supercapacitor. The galvanostatic charge– discharge profiles of (b) the pristine $WO_3//C$ and (c) NFA-embedded $WO_3//C$ asymmetric supercapacitor devices at various current densities.

Fig. S6 Energy density vs. power density for the pristine $WO_3//C$ and NFA-embedded $WO_3//C$ asymmetric supercapacitors.

Fig. S7 (a, b) Optical modulation and (c) coloration efficiency for the pristine WO₃ and NFAembedded WO₃ electrodes.

Table S1 Percentages of different chemical states of W for pristine WO_3 and NFA-embedded WO_3 films.

Chemical states	Percentages of chemical states of W (%)	
	Pristine WO ₃	NFA-embedded WO ₃
W ⁰ (Metallic W)	0	12.3
$W^{4+}(WO_2)$	0	33.6
$W^{5+}(W_2O_5)$	32.2	10.9
$W^{6+}(WO_3)$	67.8	43.2