Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Chemoselective hydrogenation of α , β -unsaturated aldehyde over Rh nanoclusters confined in metal-organic framework

Qinglin Liu, ^a Yinle Li, ^a Yanan Fan, ^a Cheng-Yong Su ^a and Guangqin Li*^a

^a MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China. E-mail: liguangqin@mail.sysu.edu.cn.

Supporting Figures and Tables

Figure S1. SEM and TEM images of MIL-101.

Figure S2. TEM images of Rh@MIL-101 (a, b) and corresponding size distribution of Rh NPs (c).

Figure S3. XRD patterns of MIL-101, Rh@MIL-101, Pt@MIL-101 and Pd@MIL-101 (a), Rh NPs and commercial Rh/C (b).

Figure S4. Nitrogen adsorption isotherms (a) and pore size distribution curves (b) at 77 K for the pristine MIL-101 and Rh@MIL-101.

Figure S5. FT-IR spectra of MIL-101 and Rh@MIL-101.

Figure S6. TEM and HRTEM images and corresponding particle size distribution of Pt@MIL-101 (a-d), Pd@MIL-101 (e-h).

Figure S7. TEM images and corresponding particle size distribution of Rh nanoparticle.

Figure S8. TEM images and corresponding particle size distribution of commercial Rh/C.

Figure S9. XRD patterns and HRTEM image of Rh@MIL-101 after six cycles of CAL hydrogenation reaction.

Figure S10. XPS spectra of Rh@MIL-101: survey (a) Cr 2p (b) and Rh 3d (c).

Figure S11. FT-IR spectra of CAL adsorption on the bare MIL-101.

Figure S12. XRD patterns and HRTEM image of Rh@MIL-101 after eight cycles of p-fluorophenol hydrodefluorization reaction.

Catalyst	Theoretical metal loading (wt%)	Actual metal loading (wt%)		
Rh@MIL-101	4.9%	4.4%		
Pt@MIL-101	8.9%	8.6%		
Pd@MIL-101	5.0%	3.4%		
Commercial Rh/C	5.0%	5.1%		

Table S1. Metal loading of the different samples determined by ICP-MS.

Entry	Catalyst	Conv.	Sel.				TOF _{metal}
			HCAL	COL	HCOL	Ester	(h ⁻¹)
1	Rh@MIL-101	98	99	-	1	-	70
2	Pt@MIL-101	55	76	12	11	-	38
3	Pd@MIL-101	92	72	-	27	1	87
4	Commercial Rh/C	53	89	-	1	10	32
5	Rh NPs ^b	20	39	1	3	57	14
6	MIL-101	20	-	-	4	96	-

Table S2. CAL hydrogenation activities and selectivity over different catalysts. ^a

^a Reaction condition: Cinnamyl aldehyde (100 μ L), catalyst (5mg), ethanol (3 mL), 30 °C, 1 MPa H₂, 5h. ^b 0.25mg Rh NPs was used for hydrogenation reaction.

Entry	Catalyst	Conv.		TOF _{metal}		
			phenol	cyclohexanone	cyclohexanol	(h ⁻¹)
1	Rh@MIL-101	99	-	7	93	15
2	Pt@MIL-101	82	5	93	2	12
3	Pd@MIL-101	N.D	-	-	-	
4	Commercial Rh/C	99	-	7	93	13
5	Rh NPs ^b	4	2	2	-	3
6	MIL-101	N.D	-	-	-	

 Table S3. p-Fluorophenol hydrodefluorination performance over different catalysts. ^a

^a Reaction condition: 0.1mmol p-fluorophenol, 10mg catalysts, 5ml H₂O, H₂ balloon, room temperature, 90min.

^b 0.5 mg Rh NPs was used for hydrodefluorination reaction.

Entry	Substrate	Product	Time (h)	Conv. (%)	Sel. (%)
1	F-OH	ОН	1.5	99	92
2	С С ОН	ОН	6	99	99
3	F-OH	ОН-ОН	6	99	99
4	F-C-OH	ОН-ОН	6	99	99
5			8	85	97
6			8	87	96
7	F-COH		4	99	99

 Table S4. Hydrodefluorization of different aryl fluorides over Rh@MIL-101. a

^a Reaction condition: 0.1mmol aryl fluorides, 10mg catalysts, 5ml H₂O, H₂ balloon, room temperature.