Supplementary Information: A catalyst design for selective electrochemical reactions: Direct production of hydrogen peroxide in advanced electrochemical oxidation

Young-Jin Ko ^{#a}, Keunsu Choi ^{#b}, Boram Yang ^c, Woong Hee Lee ^d, Jun-Yong Kim ^{a,e}, Jae-Woo Choi ^c, Keun Hwa Chae ^f, Jun Hee Lee ^g, Yun Jeong Hwang ^{d,h}, Byoung Koun Min ^{d,i}, Hyung-Suk Oh ^{d,h*} and Wook-Seong Lee ^{a*}

- ^a Center for Electronic Materials, Korea Institute of Science and Technology, Hwarang-ro 14gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- ^b Department of Physics, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan 44919, Republic of Korea
- ^c Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- ^d Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- ^e Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- ^f Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- ^g School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan 44919, Republic of Korea
- ^h Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- ⁱ Green School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

[#]These authors contributed equally.

*Corresponding authors

E-mail addresses: hyung-suk.oh@kist.re.kr (H.-S. Oh), wslee@kist.re.kr (W.-S. Lee)

Fig. S1. The H_2O_2 concentration vs time profile. The H_2O_2 decomposed by peroxide disproportionation reaction (PDR, H_2O_2 (aq) \rightarrow H_2O (l) + 0.5O₂ (g)). As shown in Fig. S1, approximately 20% of H_2O_2 decomposed in 2 hours.

Sample	Mass ratio b	y ICP (wt%)	Atomic ratio by XPS (%)			
	Pt	Ag	Pt	Ag		
Pt/C	39.6	0	4.1	0		
Pt ₃ Ag ₁	9.7	3.6	1.12	0.24		
Pt ₂ Ag ₁	9.8	2.4	0.89	0.38		
Pt ₁ Ag ₁	9.8	5.3	0.72	0.73		
Pt ₁ Ag ₂	9.1	10.1	0.68	1.41		

 Table S1. The compositions of the synthesized catalyst samples.

Fig. S2. The HR-TEM images of Pt_1Ag_1/C catalyst. (a) Low- and (b) high-magnification. The images indicate the presence of ca. $1 \sim 2 \text{ nm Pt} - Ag$ alloy clusters in the catalyst.

Fig. S3. HR-STEM images and the particle size distribution of Pt/C catalyst. (**a-b**) To visualize the dispersion and structure of Pt species, atomic resolution HAADF-STEM images were overlapped on the HR-STEM image of Pt/C; scale bar, 5 nm. (**c**) Histograms of the particle size distributions for Pt/C. Average Pt particle size of Pt/C was fitted with a Gaussian function.

Fig. S4. HR-STEM images of Ag/C catalyst. (a) Low- and (b) high-magnification to visualize the dispersion and structure of Pt species, atomic resolution HAADF-STEM images were overlapped on the HR-STEM image of Pt/C; scale bar, 5nm.

Fig. S5. The additional HR-STEM images of Pt_1Ag_1/C catalyst with different magnifications (all scale bars are 5 nm). (**a-f**) the images taken at different spots indicated the prevailing subnanometer scale Pt–Ag particles. In general, sub-nanometer scale metal particles become unstable to undergo the extensive agglomeration under the high energy electron beam (over 200 kV) ^{1, 2}. By contrast, the present Pt–Ag alloy particles were highly resistant against the agglomeration; the thermal vibrations and occasional atomic hopping were the only activities observed under the electron beam of 300 kV (see Movie S1).

Fig. S6. (a) Wide-angle XRD patterns of Pt/C and Pt-Ag alloy catalysts. (b) The Pt(111) and (200) planes were observed. The peak shift of Pt-Ag alloy catalysts was increased with degree of Pt-Ag coupling. The peaks of Pt-Ag alloy catalysts are broad, and the particle sizes calculated by Bragg's law are Pt_3Ag_1 : 1.4 nm, Pt_2Ag_1 : 1.28 nm, Pt_1Ag_1 : 1.16 nm, Pt_1Ag_2 : 1.21 nm, respectively.

Fig. S7. The oxidation state of Pt–Ag alloy catalysts. (a) The white-line positions of Pt–Ag alloy catalysts and (b) the oxidation states vs. Ag ratio profile: The XANES analysis was carried out using arctangent and Lorentzian functions to fit the white-line position. The white-line area intensities were found to be 2.0 and 6.6, which agreed with those of Pt⁰ and Pt⁴⁺, respectively, as reported by H.Yoshida *et al*³.

Fig. S8. Top-surface structure of Pt_1Ag_1 catalyst. (a) Pt 4f and (b) Ag 3d PES spectra of Pt_1Ag_1/C catalyst: for the measurement of top-surface, the input energies were 275 eV (Pt) and 650 eV (Ag), respectively.

Sample		Coordination number (CN)	$\mathbf{R}(\mathrm{\AA})\qquad \Delta\sigma^2(\mathrm{\AA}^2)$		ΔE ₀ (eV)	Short-range order (η)	
Pt ₃ Ag ₁	Pt–Pt	$\begin{array}{c} 4.90 \\ \pm \ 0.80 \end{array}$	$\begin{array}{ccccccc} 4.90 & 2.68 & 0.006 \\ \pm 0.80 & \pm 0.008 & \pm 0.00 \end{array}$				
	Pt–Ag	$\begin{array}{c} 0.45 \\ \pm \ 0.30 \end{array}$	$\begin{array}{c} 2.82 \\ \pm \ 0.010 \end{array}$	$\begin{array}{c} 0.0007 \\ \pm \ 0.004 \end{array}$	8.0 ± 1.50	0.73	
	Pt-C (O)	1.40 ± 0.11	$\begin{array}{c} 2.03 \\ \pm \ 0.003 \end{array}$	0.015 ± 0.006	_		
Pt ₂ Ag ₁	Pt–Pt	3.68 ± 0.46	2.69 ± 0.009	0.0065 ± 0.001			
	Pt–Ag	0.49 ± 0.20	$\begin{array}{c} 2.93 \\ \pm \ 0.003 \end{array}$	$\begin{array}{c} 0.0007 \\ \pm \ 0.004 \end{array}$	9.0 ± 0.01	0.69	
	Pt-C (O)	$\begin{array}{c} 0.67 \\ \pm \ 0.30 \end{array}$	$\begin{array}{c} 2.05 \\ \pm \ 0.028 \end{array}$	$\begin{array}{c} 0.015 \\ \pm \ 0.006 \end{array}$			
Pt ₁ Ag ₁	Pt–Pt	$\begin{array}{c} 0.54 \\ \pm \ 0.035 \end{array}$	2.54 ± 0.029	0.0052 ± 0.004	_		
	Pt–Ag	3.72 ± 0.40	2.95 ± 0.013	0.0124 ± 0.0016	7.2 ± 0.90	-0.70	
	Pt-C (O)	0.1 ± 0.02	$\begin{array}{c} 1.98 \\ \pm \ 0.017 \end{array}$	0.0164 ± 0.0017	_		
Pt ₁ Ag ₂	Pt–Pt	$\begin{array}{c} 0.30 \\ \pm \ 0.26 \end{array}$	2.52 ± 0.026	0.0031 ± 0.004	_		
	Pt–Ag	3.27 ± 0.38	$\begin{array}{c} 2.90 \\ \pm \ 0.010 \end{array}$	0.0132 ± 0.0016	7.7 ± 0.84	-0.15	
	Pt-C (O)	0.67 ± 0. 24	1.95 ± 0.016	0.0409 ± 0.0092			

Table S2. EXAFS fitting results of Pt–Ag alloy catalysts. The multi-shell fitting results ($\Delta k = 2 \sim 12 \text{ Å}^{-1}$) of the experimental EXAFS spectrum

Fig. S9. EDS mapping images of the Pt-Ag alloy catalysts. The scale bars are 5 nm and the measurement time was 10 minutes.

Fig. S10. The model structures of (a) Pt sub-nanoparticle and (b) Pt–Ag alloy subnanoparticle. Considering the particle size (~ 1.5 nm) measured in the experiment, we built the nanoparticle with 55 atoms.

Fig. S11. Accumulated concentrations of H_2O_2 produced on the Pt/C and Pt-Ag alloy catalysts with the OER counter reaction during repeated 1-hour operation cycles.

Fig. S12. HR-STEM images of Pt_1Ag_1/C catalyst after repeated H-Cell operation with different magnifications (all scale bars are 5 nm). (**a-d**) After 6 cycles of 1 hr operations, HR-STEM images were taken at the acceleration voltage of 300 kV. The result indicated that the number of sub-nanoparticles only slightly increased, while the majority of the particles retained their sizes.

Fig. S13. Particle size distribution of Pt_1Ag_1/C after 6 cycles of 1 hr operations from HR-STEM images (Fig. S12).

Fig. S14. The XPS spectra of Pt_1Ag_1 catalyst after 6 cycles of 1 hr operations for (a) Pt_{4f} and (b) Ag_{3d} . XPS-Pt4f spectra were deconvoluted with Pt^0 (redline), Pt^{2+} (dark-cyan lines), Pt^{4+} (magenta lines), and Pt-Ag (blue lines) phases. The $Pt^0/Pt^{2+}/Pt^{4+}/Pt-Ag$ ratios change from 11.5/7.7/3.8/77.0 to 9.3/13.8/8.8/68.0, respectively.

Fig. S15. The time-plasma intensity profiles of Ag and Pt obtained by in-situ ICP-OES. (a) Ag and Pt standard profiles, (b) Ag and (c) Pt dissolution profiles for Pt_1Ag_1 catalyst. The *in-situ/operando* ICP-OES measurements for Pt_1Ag_1 catalyst were performed under 0.2 V vs RHE at room temperature. (d) The time-plasma intensity profiles of Ag and Pt obtained by in-situ ICP-MS for Pt_1Ag_1 catalyst. The *in-situ/operando* ICP-MS measurements were also performed under 0.2 V vs RHE at room temperature.

Fig. S16. The time-plasma intensity profiles of (a) Ag and (b) Pt from pH 1 to pH 3 obtained by *in-situ/operando* ICP-MS for Pt_1Ag_1 catalyst. The *in-situ/operando* ICP-MS measurements were also performed under 0.2 V vs RHE at room temperature.

Fig. S17. Cross-sectional schematic diagram of renovated single-cell for ORR. Pt/C catalyst was deposited on the gas diffusion layer (GDL) as an anode. Nafion membrane was located between the anode and cathode, which was assembled between the two flow plates. The H_2 gas and the O_2 gas were supplied to the anode and the cathode, respectively. In order to increase the diffusion of produced H_2O_2 , the electrolyte solution was supplied to flow between the Nafion membrane and the cathode. Nafion beads were applied in the channel to mediate the proton diffusion.

Catalyst		RRDE		H-cell				Single-cell				
		Electrolyte	Loading (mg/cm ²)	F.E. (%) @ 0.2 V	Electrolyte	Loading (mg/cm ²)	H ₂ O ₂ accumulation	F.E. (%)	Loading	ng H ₂ O ₂ F accumulation		F.E. (%) Ref.
Noble metal catalysts	Pt-Ag/C	0.05 M Na ₂ SO ₄ (pH 3)	0.08	65.4	0.05 M Na ₂ SO ₄ (pH 3)	$\frac{1 \text{ mg/cm}^2}{(\text{total} = 1 \text{ mg})}$	51.5 μmol in 60 min (343 mol/kg _{cat})	69.4	l mg/cm ² (total = 10 mg)	514 μmol in 60 min	75.5	This work
							70.9 μmol in 120 min (472 mol/kg _{cat})	67.1		1019 μmol in 120 min	77.3	
	Pt–Hg/C (Pt ₁ Hg ₄ polycrystal)	0.1 M HClO ₄	0.014	83.3	0.1 M HClO ₄	-	7.0 µmol in 18.3 min	66.4	0.1 mg/cm ² (total = not mentioned)	-	Negligible	4, 5
	Ag/C	0.1 M HClO ₄	0.02	60	0.1 M HClO ₄	0.1 mg/cm ² (total = not mentioned)	-	75	0.1 mg/cm ² (total = not mentioned)	-	30	4
	C-coated Pt	1 M HClO ₄	0.08	34	-	-	-	-	-	-	-	6
– Carbon based materials –	N-doped carbon	0.5 M H ₂ SO ₄	0.05	97.1	0.5 M H ₂ SO ₄	0.05 mg/cm ² (total = not mentioned)	159.9 mol/kg _{cat} in 60 min	72.5	-	-	-	7
	Anthraquinone/ carbon black	0.1 M H ₂ SO ₄	4	89.5	0.1 M H ₂ SO ₄	-	0.74 mol/kg _{cat} in 60 min	26.3	-	-	-	8
	Oxidized-CNT	0.1 M HClO ₄	0.1	≈ 30	-	-	-	-	-	-	-	9
	F-mrGO (600)**	0.1 M KOH	0.01		0.1 M KOH	0.01 mg/cm^2 (total = 0.005 mg)	-	-	-	-	-	10
- Single-atom catalysts -	Pt–S	0.1 M HClO ₄	0.05	94.8	1 M HClO ₄	$2 mg/cm^2$ (total = 8 mg)	12.2 mol/kg _{cat} in 60 min	-	-	-	-	11
	Pd–Au	0.1 M HClO ₄	0.125	85	-	-	-	-	-	-	-	12
	Pt/TiN	0.1 M HClO ₄	0.015*	76	-	-	-	-	-	-	-	13
	Pt/CuS _x	0.1 M HClO ₄	0.1	≈ 90	0.5 M HClO ₄	-	546 mol/kg _{cat} in 60 min	90	-	-	-	14
	Fe-N-C**	0.1 M KOH	0.1	≈ 85	-	-	-	-	-	-	-	15
Non-noble metal – catalysts	CoS ₂	$0.05 \text{ M H}_2\text{SO}_4$	0.305	≈ 70	0.05 M H ₂ SO ₄	0.374 mg/cm^2 (total = 0.412 mg)	5.72 µmol in 20 min	54.6		-	_	16
							13.08 µmol in 60 min	41.2				
	Со-С	0.1 M HClO ₄	0.6	95	0.05 M H ₂ SO ₄	1 mg/cm^2 (total = not mentioned)	5 mol/kg _{cat} in 60 min	80	-	-	-	17

Table S3. Performance comparison of reported various electrocatalysts for H₂O₂ production.

* Geometric area is not mentioned. ** Only tested in alkaline condition

References

- 1. A. Uzun, V. Ortalan, Y. L. Hao, N. D. Browning and B. C. Gates, *Acs Nano*, 2009, **3**, 3691-3695.
- 2. A. Uzun, V. Ortalan, N. D. Browning and B. C. Gates, *J Catal*, 2010, 269, 318-328.
- 3. H. Yoshida, S. Nonoyama, Y. Yazawa and T. Hattori, *Phys Scripta*, 2005, **T115**, 813-815.
- 4. S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvio, V. Colic, R. Frydendal, J. Rossmeisl, I. Chorkendorff and I. E. L. Stephens, *Acs Catal*, 2018, **8**, 4064-4081.
- 5. S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L. Stephens and J. Rossmeisl, *Nat Mater*, 2013, **12**, 1137-1143.
- 6. C. H. Choi, H. C. Kwon, S. Yook, H. Shin, H. Kim and M. Choi, *J Phys Chem C*, 2014, **118**, 30063-30070.
- 7. Y. Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kuhl, C. Spori, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B. Roldan Cuenya and P. Strasser, *Acs Catal*, 2018, **8**, 2844-2856.
- 8. R. B. Valim, R. M. Reis, P. S. Castro, A. S. Lima, R. S. Rocha, M. Bertotti and M. R. V. Lanza, *Carbon*, 2013, **61**, 236-244.
- 9. Z. Y. Lu, G. X. Chen, S. Siahrostami, Z. H. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. C. Lin, Y. Y. Liu, T. F. Jaramillo, J. K. Norskov and Y. Cui, *Nat Catal*, 2018, 1, 156-162.
- 10. H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. H. Guo, P. D. Yang and B. D. McCloskey, Nat Catal, 2018, 1, 282-290.
- 11. C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H. T. Kim, K. J. J. Mayrhofer, H. Kim and M. Choi, *Nat Commun*, 2016, 7.
- 12. J. S. Jirkovsky, I. Panas, E. Ahlberg, M. Halasa, S. Romani and D. J. Schiffrin, J Am Chem Soc, 2011, 133, 19432-19441.
- 13. S. Yang, J. Kim, Y. J. Tak, A. Soon and H. Lee, Angew Chem Int Edit, 2016, 55, 2058-2062.
- 14. R. Shen, W. Chen, Q. Peng, S. Lu, L. Zheng, X. Cao, Y. Wang, W. Zhu, J. Zhang, Z. Zhuang, C. Chen, D. Wang and Y. Li, *Chem*, 2019, **5**, 2099-2110.
- 15. K. Jiang, S. Back, A. J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J. K. Nørskov, S. Siahrostami and H. Wang, *Nat Commun*, 2019, **10**, 3997.
- 16. H. Sheng, E. D. Hermes, X. Yang, D. Ying, A. N. Janes, W. Li, J. R. Schmidt and S. Jin, Acs Catal, 2019, 8433-8442.
- 17. A. Bonakdarpour, D. Esau, H. Cheng, A. Wang, E. Gyenge and D. P. Wilkinson, *Electrochimica Acta*, 2011, 56, 9074-9081.