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Experimental Section

Chemicals. FeSO4．6H2O, CoSO4．6H2O, NiSO4．6H2O (Alfa Aesar), NaNO3 (Aldrich), 99.9% IrO2 

powder, Nafion® perfluorinated resin solution (5 wt. % in lower aliphatic alcohols and water, contains 15-20% 

water) (Sigma-Aldrich), platinum disk electrode (surface area = 0.0707 cm2) (ALS), glassy carbon disk 

electrode (surface area = 0.0707 cm2, CH Instruments), graphite plate (R8340, 50×4×1 mm, Great Carbon 

Co., Ltd., Taiwan) and Ni foam (surface density 350 g/m2, MTI corporation) were used as received. 

Material Characterization. SEM images and EDX spectra were collected by a field emission 

scanning electron microscopy (JSM-6330F, JEOL Co. Ltd., Japan) operating at an accelerating voltage of 10 

kV equipped with energy dispersive X-ray spectroscopy (Oxford). Powder X-ray diffraction (pXRD) data 

were obtained using a Bruker D8 X-ray Powder Diffractometer with a Cu Kα radiation source in the range 

2θ = 10-70°. Infrared spectrum of electrodeposited film was recorded on a PerkinElmer model spectrum one 

B spectrophotometer with KBr solid. X-ray photoelectron spectroscopy (XPS) analyses were performed 

with a Phi Quanterall (Ulvac-Phi. Inc) using a high-resolution monochromatic Al Kα line X-ray source 

(1486.6 eV) and 200 m spot size on the surface of the sample. The X-ray source was directed 45o with 

respect to the sample surface. The analyzer is located perpendicular to the sample surface. The spectra were 

registered at a base pressure of < 5×10-9 torr. The electron energy analyzer was operated with pass energy of 

55 eV with 30 sweeps enabling high resolution of the spectra to be obtained. Because oxygen is always 

present on samples surface exposed to the atmosphere, either due to adventitious nitrate, phosphate or water, 

it is difficult to accurately quantify the oxygen content in these samples without argon ion sputter cleaning.1-

2 All XPS spectra were calibrated by referring carbon 1s peak at 284.8 eV. XPS peaks were assigned using 

MultiPak Spectrum software and Perkin-Elmer Handbook of X-ray Photoelectron Spectroscopy.3 XPS data 

analysis and the peak deconvolution by using Gaussian−Lorentzian curve fitting based on Shirley 

background correction was accomplished with OriginPro 2016 software.

Electrochemical Measurements. Electrochemical measurements were carried out using a CHI model 

621b (CH Instrument) potentiostat instrumentation with a standard three-electrode system. The graphite 

plates (surface area = 0.08 cm2) were used as working electrode and auxilary electrode, respectively. The Ni 

foam (surface area = 0.08 cm2) was used for the fabrication of CFeCoNiP/NF working electrode. SCE 

(saturated calomel electrode, pH = 7) and Hg/HgO (pH =14) were used as reference electrodes. The working 



electrodes CFeP, CCoP, CNiP, CFeCoP, CFeNiP, CcoNiP, CfeCoNiP and CFeCoNiP/NF were prepared 

from electrochemical deposition of the corresponding metal sulfate(s) in 1 M phosphate buffer (pH = 7) 

under N2 atmosphere onto the graphite plates or Ni foam using a gas-tight, two-compartment cell with iR 

compensation. The cathodic deposition process is based on the reduction of nitrate to ammonium cation 

along with the generation of hydroxide that could facilitate the depositon of metal oxide on the electrode 

surface.9 Electrodeposition was accomplished by applying -1.0 V at 40 oC until the current density reaches 

an asymptotic limit (about 3 h). Films characterized ex situ prior to further electrochemical measurements 

are referred to “as-prepared” electrodes. Polarization curves of “as-prepared” electrodes in 1 M NaOH 

electrolyte were recorded by sweeping the potential from 0.00 V to -0.80 V and from 1.20 V to 2.00 V for 

HER and OER, respectively, with scan rate of 1 mV/s. The performance of overall water splitting was 

assessed in 1 M NaOH aqueous solution using a two-electrode configuration, and the LSV measurement was 

conducted at a scan rate of 1 mV/s. The longevity of CFeCoNiP-CFeCoNiP electrode-pair device for 

alkaline water electrolysis was evaluated using amperometry at a constant overpotential of 540 mV in 1 M 

NaOH electrolyte. All electrochemical measurements were performed at ambient temperature. All of the 

potentials were calibrated to a reversible hydrogen electrode (RHE) according to Nernst equation (ERHE = 

ESCE + 0.05916pH + 0.244; ERHE = EHg/HgO + 0.05916pH + 0.098).4 The equilibrium potential (Eo) for HER 

and OER is 0.00 V and 1.23 V vs RHE, respectively.

Electrochemical Capacitance Measurements. The electrochemically active surface area (ECSA), 

roughness factor (RF) and specific activity (js) of CFeP, CCoP, CNiP, CFeCoP, CFeNiP, CCoNiP and 

CFeCoNiP electrodes were estimated by electrochemical double-layer capacitance (Cdl) determined by 

cyclic voltammetry (CV) in 1 M NaOH aqueous solution.5-6 The specific activity was measured at 

overpotentials of 100 and 350 mV for HER and OER, respectively. The potential range where there is a non-

Faradaic current response was typically a 100 mV potential window centered on open-circuit potential (OCP) 

of the system. CV measurements were conducted in static solution by sweeping the potential across the non-

Faradaic region from positive to negative potential and back at different scan rates. The working electrode 

was held at each potential vertex for 10 s before initiating the next sweep.

The electrochemically active surface area (ECSA) of a film-electrode sample is calculated from the 

measured double-layer capacitance (Cdl, mF) and specific capacitance (Cs, mF/cm2).



ECSA = Cdl / Cs

Specific capacitance is the capacitance of an atomically smooth planar surface of the material per unit area 

under identical electrolyte condition. It has been reported that general specific capacitance is estimated as 

0.04 mF/cm2 in 1 M NaOH aqueous solution.5-6 Roughness factor (RF) is then calculated by dividing ECSA 

by 0.08 cm2, the geometric area of the electrode.

Electrical Impedance Spectroscopy (EIS). EIS measurements were carried out using a Zahner 

Zennium galvanostatic instrumentation with a standard three-electrode system. After LSV polarization 

curves were recorded, AC impedance measurements were conducted in the frequency range between 100 

kHz and 100 mHz with AC modulation of 10 mV amplitude at overpotentials of 190 and 350 mV for HER 

and OER, respectively, in 1 M NaOH aqueous solution. Furthermore, in order to extract the true catalytic 

kinetics of an electrocatalyst, EIS measurements were performed consecutively at various overpotentials 

with interval as 5 mV. The applied overpotential for HER and OER is ranging from 1 to 30 mV and from 

210 to 240 mV, respectively, for all electrocatalysts except that the overpotential range for CFeCoNiP 

cathode is 1 - 24 mV with interval of 4 mV owing to its high HER performance. The equivalent circuit was 

proposed to illustrate HER and OER impedance spectra.7-9 The high frequency resistive response, Re, 

represents the ohmic loss from electrolyte resistance. In this study, Re value of 1 M NaOH electrolyte is in 

the range of 2.4 and 2.7 . Film resistance (Rf) is related to the ohmic drop caused by the film resistivity and 

electrolyte resistance drop due to porous morphology of the film. Both polarization resistance (Rp) and 

surface intermediate resistance (Rs) are connected to the kinetics of the interfacial charge transfer reaction. 

When the applied potential during EIS measurement was relatively high, Rp and Rs are replaced with the 

combined charge transfer resistance (Rct). In the whole cell, Re is replaced by contact resistance (Rc) that 

describes ohmic loss derived from electrolyte resistance and the resistance between CFeCoNiP material and 

the support (Ni foam vs graphite plate). The complex nonlinear least-squares (CNLS) fitting of the 

impedance data was performed with Zview 3.0 software package. From the fitting results, only the 

logarithmic reciprocal of Rct is plotted against the overpotential to obtain the corresponding kinetic Tafel 

slope, which could exactly reflect the inherent charge transfer kinetics of the catalyst material alone and 

exclude the influence of capacitive background, electrolyte resistance and film resistance.9-11

Determinations of Mass Activity and Faradaic Efficiency. The amounts of CFeCoNiP, CFeNiP, 



CCoNiP, CCoP and CNiP catalysts cathodically deposited on the surface of graphite plate, determined by 

the weight differences of graphite plate before and after material deposition, is approximately 4.7, 3.2, 3.6, 

3.5 and 3.2 mg/cm2, respectively. Upon conducting OER in 1 M NaOH for 10 min, the amounts of 

CFeCoNiP, CFeNiP, CCoNiP, CCoP and CNiP catalysts on the surface of graphite plate were estimated as 

4.5, 3.0, 3.4, 3.3 and 3.0 mg/cm2, respectively. The value of mass activity (A/g) was calculated from the 

catalyst loading (m, mg/cm2) and the measured current density (j, mA/cm2) at overpotentials of 100 and 350 

mV for HER and OER, respectively.

mass activity = j / m

A calibration curve was built by gas chromatography (SRI 8610C, molecular sieves (MS-13x) column 

and helium ionization detector (HID)) analysis via injection of the known amount of pure hydrogen and 

oxygen. The amount of hydrogen and oxygen dissolved in water was corrected by Henry’s law (KH = 7.8 × 

10-4mol/atm·L for H2 and 1.3×10−3mol/atm·L for O2). The detection of hydrogen and oxygen was performed 

in two-compartment CV cell equipped with CFeCoNiP-CFeCoNiP electrode-pair setting in 1 M NaOH 

aqueous solution. Before the detection of the gas product, the cell is firmly sealed and subsequently purged 

with nitrogen for 30 min. Upon conducting the electrolysis at a current density of 100 mA/cm2, the gas 

products were analyzed to determine Faradaic efficiency.

In Operando X-Ray Absorption Spectroscopy (XAS). All metal XAS K edge spectra were carried out 

at NSRRC, Hsinchu, Taiwan and were recorded at ambient temperature. Experiments were performed in 

transmission mode at TPS 44A beamline with a double crystal Si(111) monochromator. The energy 

resolution ΔE/E was estimated to be about 2 × 10−4. High harmonics were rejected by Rh-coated mirrors. 

The Fe, Co and Ni Kedge spectra were scanned from 6.912 to 7.609 keV, from 7.509 to 8.233 keV and from 

8.133 to 9.240 keV, respectively. The reference Fe, Co and Ni foils were always measured simultaneously, 

in which the first inflection point at 7112.0 eV (Fe), 7709.0 eV (Co) and 8333.0 eV (Ni) in XAS spectra 

were used for energy calibration. Ion chambers used to measure the incident (I0) and transmitted (It) beam 

intensities were filled with a mixture of N2 and He gases and a mixture of N2 and Ar gases, respectively.

For in operando metal K edge XAS experiments, carbon fiber paper was applied as working electrode. 

The amperometric method with applied potential at -1.0 V was used to deposit FeCoNi-based electrocatalyst 

on the surface of carbon fiber paper, and the deposition time was around 3 h (film thickness 168.3 m) or 



100 s (film thickness 389.2 nm). Also, an in operando setup (Figure S25) was applied using Kapton films to 

cover the central hole which serves as the window for incident X-ray beam. The catalyst-loaded carbon fiber 

paper is carefully pushed toward the inner part of Kapton film, and the thickness of 1 M NaOH aqueous 

electrolyte between catalyst and Kapton film is estimated to be less than 500 m. During the measurements, 

the catalyst was polarized at a desired potential and was held until a stable current obtained. After that, this 

applied potential was held for additional 10 min to finish Fe/Co/Ni K edge XAS measurements (0.5 s per 

scan) before applying the next desired potentials. The step size of in operando XAS measurements at Fe, Co 

and Ni K edge was 0.35, 0.38 and 0.41 eV, respectively. The acquired XANES and EXAFS data were 

processed to be normalized to the edge jump as 1.0 using Athena module implemented in the IFEFFIT 

software packages. The k weight in the background function determination was set to 2, and the frequency 

cut off parameter, Rb kg, was set to 1. The k3-weighted (k) data of Fe/Co/Ni K edges were Fourier 

transformed to real R space using the hanning window function (k = 1 Å-1) to separate EXAFS 

contributions from different coordination shells. The Artemis code was used to obtain the quantitative 

structural parameters by least-squares fitting. The detailed fitting information on Fe/Co/Ni EXAFS data was 

described in Figures S17-S20 and summarized in Tables S6 and S7.
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Figure S1. CV data (50 mV/s) showing Ni2+/Ni3+ redox features of Ni-containing electrocatalysts in 1 M 
NaOH aqueous electrolyte.
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Figure S2. Double-layer capacitance (Cdl) measured in 1 M NaOH aqueous solution to determine roughness 
factor (RF) for HER. (a) CFeCoNiP electrode (Cdl = 5.81 mF/cm2, RF = 145.1), (b) CFeNiP electrode (Cdl = 
4.89 mF/cm2, RF = 122.3), (c) CCoNiP electrode (Cdl = 4.58 mF/cm2, RF = 114.3), and (d) CNiP electrode 
(Cdl = 3.61 mF/cm2, RF = 90.2).
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Figure S3. Double-layer capacitance (Cdl) measured in 1 M NaOH aqueous solution to determine roughness 
factor (RF) for OER. (a) CFeCoNiP electrode (Cdl = 5.02 mF/cm2, RF = 125.4), (b) CFeNiP electrode (Cdl = 
4.49 mF/cm2, RF = 112.1), (c) CCoNiP electrode (Cdl = 4.85 mF/cm2, RF = 121.0), and (d) CNiP electrode 
(Cdl= 4.30 mF/cm2, RF = 107.4).
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Figure S4. The amount of H2 and O2 gases obtained by theoretical calculation and experimental 
measurements versus time for electrolysis with current density of 100 mA/cm2 in 1 M NaOH aqueous 
solution by using CFeCoNiP-CFeCoNiP electrode-pair setting ( = 540 mV).
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Figure S5. The Nyquist plots and kinetric Tafel slope derived from the plots of log (1/Rct) vs overpotential 
for (a) CFeCoP, (b) CFeNiP, (c) CCoNiP, (d) CFeP, (e) CCoP, and (f) CNiP cathodes in 1 M NaOH 
aqueous electrolyte.
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Figure S6. The Nyquist plots and kinetric Tafel slope derived from the plots of log (1/Rct) vs overpotential 
for (a) CFeCoP, (b) CFeNiP, (c) CCoNiP, (d) CFeP, (e) CCoP, and (f) CNiP anodes in 1 M NaOH aqueous 
electrolyte.
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Figure S7. (a) SEM image, (b) EDX spectrum, (c)-(d) SEM-EDX elemental maps (Fe, Co, Ni and O 
elements are shown as green, white, red and blue), and (e) pXRD pattern of CFeCoNiP cathode.
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Figure S8. (a) SEM image, (b) EDX spectrum, (c)-(d) SEM-EDX elemental maps (Fe, Co, Ni, O and P 
elements are shown as green, white, red, blue and blue), and (e) pXRD pattern of CFeCoNiP anode.
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Figure S9. (a) SEM image, (b) EDX spectrum, (c)-(d) SEM-EDX elemental maps (Fe, Ni, O and P elements 
are shown as green, red, blue and blue) of CFeNiP cathode.
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Figure S10. (a) SEM image, (b) EDX spectrum, (c)-(d) SEM-EDX elemental maps (Fe, Ni, O and P 
elements are shown as green, red, blue and blue) of CFeNiP anode.
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Figure S11. (a) SEM image, (b) EDX spectrum, (c)-(d) SEM-EDX elemental maps (Co, Ni, O and P 
elements are shown as white, red, blue and blue) of CCoNiP cathode.
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Figure S12. (a) SEM image, (b) EDX spectrum, (c)-(d) SEM-EDX elemental maps (Co, Ni, O and P 
elements are shown as white, red, blue and blue) of CCoNiP anode.
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Figure S13. FT-IR spectrum of CFeCoNiP electrode. M is denoted as Fe, Co and Ni.

(a)                                (b)
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Figure S14. XPS spectra of CFeCoNiP electrode. (a) O1s of cathode, (b) O 1s of anode, and (c) P 2p of 
cathode, (e) P 2p of anode. M is denoted as metal, Fe, Co and Ni.
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Figure S15. XPS spectra of CFeCoNiP electrode. (a) Fe 2p of cathode, (b) Co 2p of cathode, (c) Ni 2p of 
cathode, and (d) Fe 2p of anode, (e) Co 2p of anode, (f) Ni 2p anode.
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Figure S16. (a) SEM image, (b) EDX spectrum, (c)-(d) SEM-EDX elemental maps (Fe, Co, Ni and O 
elements are shown as green, white, red and blue) of CFeCoNiP cathode after alkaline water splitting for 
139 h.
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Figure S17. (a) SEM image, (b) EDX spectrum, (c)-(d) SEM-EDX elemental maps (Fe, Co, Ni, O and P 
elements are shown as green, white, red, blue and blue) of CFeCoNiP anode after alkaline water splitting for 
139 h.
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Figure S18. XPS spectra of CFeCoNiP electrode-pair setting after alkaline water splitting for 139 h. (a) P 2p 
of cathode, (b) P 2p of anode, and (c) O 1s of cathode, (d) O 1s of anode.
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Figure S19. XPS spectra of CFeCoNiP electrode-pair setting after alkaline water splitting for 139 h. (a) Fe 
2p of cathode, (b) Co 2p of cathode, (c) Ni 2p of cathode, and (d) Fe 2p of anode, (e) Co 2p of anode, (f) Ni 
2p of anode.
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Figure S20. Cross-sectional SEM images of CFeCoNiP electrode. (a) thick film, and (b) thin film. The 
XANES spectra of (c) Fe K edge, (d) Co K edge, and (e) Ni K edge. The R-space EXAFS spectra of (f) Fe 
K edge, (g) Co K edge, and (h) Ni K edge.
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Figure S21. The k-space and R-space EXAFS spectra of thick film (a) Fe K edge, (b) Co K edge, (c) Ni K 
edge, and thin film (d) Fe K edge, (e) Co K edge, (f) Ni K edge. Shown are data (black) and fitting curves 
(red) within fitting window (blue). The detailed EXAFS fitting results are described in Tables S6 and S7.
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Figure S22. (a) The XANES and (b) the energy positions of the first derivative of XANES of Fe foil, FeO, 
Fe3O4 and Fe2O3, which were used as Fe0, Fe2+, Fe2.67+ and Fe3+ references, respectively. (c) The linear 
regression follows the equation, photon energy = 4.76 (Fe oxidation state) +7112.4. The changes in Fe 
oxidation state under operational conditions are estimated by the equation. (d) Operando Fe K edge XANES 
and (e) the corresponding first derivatives under HER catalytic condition. (f) The k-space and R-space 
EXAFS spectra under HER overpotential of 800 mV. (g) Operando Fe K edge XANES and (h) the 
corresponding first derivatives under OER catalytic condition. (i) The k-space and R-space EXAFS spectra 
under OER overpotential of 600 mV. Shown are data (black) and fitting curves (red) within fitting window 
(blue). The detailed EXAFS fitting results are described in Table S7.
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Figure S23. (a) The XANES and (b) the energy positions of the first derivative of XANES of Co foil, CoO, 
Co3O4 and CoO2Li, which were used as Co0, Co2+, Co2.67+ and Co3+ references, respectively. (c) The linear 
regression follows the equation, photon energy = 5.34 (Co oxidation state) + 7709.2. The changes in Co 
oxidation state under operational conditions are estimated by the equation. (d) Operando Co K edge XANES 
and (e) the corresponding first derivatives under HER catalytic condition. (f) The k-space and R-space 
EXAFS spectra under HER overpotential of 800 mV. (g) Operando Co K edge XANES and (h) the 
corresponding first derivatives under OER catalytic condition. (i) The k-space and R-space EXAFS spectra 
under OER overpotential of 600 mV. Shown are data (black) and fitting curves (red) within fitting window 
(blue). The detailed EXAFS fitting results are described in Table S7.
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Figure S24. (a) The XANES and (b) the energy positions of the first derivative of XANES of Ni foil, 
Ni(OH)2, and Ni2O3, which were used as Ni0, Ni2+and Ni3+ references, respectively. (c) The linear regression 
follows the equation, photon energy = 5.43 (Ni oxidation state) + 8333.3. The changes in Ni oxidation state 
under operational conditions are estimated by the equation. (d) Operando Ni K edge XANES and (e) the 
corresponding first derivatives under HER catalytic condition. (f) The k-space and R-space EXAFS spectra 
under HER overpotential of 800 mV. (g) Operando Ni K edge XANES and (h) the corresponding first 
derivatives under OER catalytic condition. (i) The k-space and R-space EXAFS spectra under OER 
overpotential of 600 mV. Shown are data (black) and fitting curves (red) within fitting window (blue). The 
detailed EXAFS fitting results are described in Table S7.
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Figure S25. Pictures of in operando cell in electrochemical three-electrode operation. (a) The cell consists 
of three parts, including bottom part, top part and U-shape ring. (b) Because the X-ray beam generally 
propagates horizontally, the cell was placed vertically with the back of main electrochemical compartment 
facing toward the incoming beam. The main electrochemical compartment is formed by the central hole 
which is confined by two Kapton tapes, which serves as the window for X-ray beam.

Figure S26. Polarization curve for overall water splitting of CFeCoNiP/NF-CFeCoNiP/NF electrode-pair 
setting shows the high current density performance in 1 M NaOH aqueous solution.
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Figure S27. EIS measurements for overall water splitting using CFeCoNiP-CFeCoNiP and CFeCoNiP/NF-
CFeCoNiP/NF electrode-pair settings. (a) Nyquist plots under OCP condition. (b) Nyquist plots at cell 
voltage of 1.58 V.

Table S1. Comparisons of HER performance for CFeCoNiP electrode with other reported electrocatalysts 
on carbon-based or metal-based support in 1 M alkaline electrolyte (KOH or NaOH). 10mA/cm2 and 
100mA/cm2 correspond to the overpotentials at current densities of 10 and 100 mA/cm2, respectively.

Electrocatalyst Support Tafel slope
(mV/dec)

10 mA/cm2 
(mV)

100 mA/cm2 
(mV)

Reference

CFeCoNiP graphite 36 37 174 This work
Pt-CoS2 nanosheet CC 82 24 Adv. Energy Mater. 2018, 8, 1800935
NiCo2Px nanowires CF 34.3 58 127 Adv. Mater. 2017, 29, 1605502

FLNPC@MoP-NC/MoP-C CC 52 69 Adv. Funct. Mater. 2018, 28, 1801527.
porous FeCo-NiSe2 CFC 89 92 Adv. Mater. 2018, 30, 1802121

O-CoMoS CF 70 97 ACS Catal. 2018, 8, 4612
Ni/Mo2C/porous C GC 101 179 NA Chem. Sci. 2017, 8, 968

Ni-P CFC 85.4 117 Adv. Funct. Mater. 2016, 26, 4067.
Porous NiCoFe LTH CFC 70 200 ACS Energy Lett. 2016, 1, 445

MoC/Mo2C GC 42 120 NA Chem. Sci. 2016, 7, 3399
porous Mo2C GC 59 151 NA Nat. Commun. 2015, 6, 1

CFeCoNiP/NF NF 31 34 150 This work
MoO2 nanosheets NF 41 27 Adv. Mater. 2016, 28, 3785

V-Co4N NF 44 37 Angew. Chem. Int. Ed. 2018, 57, 5076
CoP-MNA NF 51 54 Adv. Funct. Mater. 2015, 25, 7337

FeCoNi-HNTAs NF 37.5 58 Nat. Commun. 2018, 9, 2452
P-NiFe NF 67 75 NA Chem. Sci. 2018, 9, 1375

Co(OH)2@PANI NF 91.6 88 Adv. Funct. Mater. 2015, 25, 6814
mesoporous FeS2 NF 78 96 NA J. Am. Chem. Soc. 2017, 139, 13604

Abbreviations: CC, carbon cloth; CF, carbon fiber; CFC, carbon fiber cloth; GC, glassy carbon; NF, Ni foam; FLNPC, few 
layered N, P dual doped carbon; LTH, layered triple hydroxide; MNA, mesoporous nanorod arrays; HNTA, hybrid nanotube 
arrays.



Table S2. Comparisons of OER performance for CFeCoNiP electrode with other reported electrocatalysts 
on carbon-based or metal-based support in 1 M alkaline electrolyte (KOH or NaOH). 10mA/cm2 and 
100mA/cm2 correspond to the overpotentials at current densities of 10 and 100 mA/cm2, respectively.

Electrocatalyst Support Tafel slope
(mV/dec)

10 mA/cm2 
(mV)

100 mA/cm2 
(mV)

Reference number

CFeCoNiP graphite 38 250 300 This work
defective EG NiFe LDH GC 52 210 Adv. Mater. 2017, 29, 1700017

CoSe/NiFe LDH EG 57 NA 270(150 
mA/cm2)

Energy Environ. Sci. 2016, 9, 478

NiFeOx CF 31.5 230 260 Nat. Commun. 2015, 6, 1
P-CoSe2/N-C flake arrays CC 36 230 Adv. Funct. Mater. 2018, 28, 1804846

porous FeCoNi LTH CFC 32 239 ACS Energy Lett. 2016, 1, 445
N2-CoS2-400 CP 115 240 410(400 

mA/cm2)
ACS Catal. 2017, 7, 4214

porous FeCo-NiSe2 CFC 63 251 Adv. Mater. 2018, 30, 1802121
CoAl-LDH GC 36 252 Adv. Mater. 2016, 28, 7640

Co4N CC 44 257 Angew. Chem. Int. Ed. 2015, 54, 14710
FeCoOOH CFC 30 266 Angew. Chem. Int. Ed. 2018, 57, 2672

Ni-Co nanowire CF 43.6 302 Adv. Energy Mater. 2017, 7, 1601492
CoS/carbon nanotube CP 72 306 ACS Nano 2016, 10, 2342

NiCoP@C GC 96 330 Angew. Chem. Int. Ed. 2017,56, 3897
CoMnP GC 61 330 J. Am. Chem. Soc. 2016, 138, 4006

CFeCoNiP/NF NF 34 266 (100 
mA/cm2)

340 (500 
mA/cm2)

This work

NiFeV LDH NF 42 195 (20 
mA/cm2)

233 Adv. Energy Mater. 2018, 8, 1703341

FeCoNi-HNTAs NF 49.9 184 Nat. Commun. 2018, 9, 2452
NixFe1-xSe2-DO NF 28 195 Nat. Commun. 2016, 7, 12324

(FexNi1-x)2P NF 66 156 255 (500 
mA/cm2)

Nano Energy 2017, 38, 553

FeNiP-NP NF 76 180 Adv. Mater. 2017, 29, 1704075
Cu@NiFe LDH Cu foam 27.8 199 Energy Environ. Sci. 2017, 10, 1820

Abbreviations: CC, carbon cloth; CF, carbon fiber; CFC, carbon fiber cloth; GC, glassy carbon; EG, exfoliated graphene; NF, Ni 
foam; LTH, layered triple hydroxide; HNTA, hybrid nanotube arrays.



Table S3. Comparisons of water splitting activity for CFeCoNiP electrode with other reported bifunctional 
electrocatalysts on carbon-based or metal-based support in 1 M alkaline electrolyte (KOH or NaOH).

Electrocatalyst Support Tafel slope
(mV/dec)

Current density 
(j, mA/cm2)

Voltage at the 
corresponding j (V)

Reference number

10 1.52
100 1.77CFeCoNiP graphite 43
300 1.96

This work

porous FeCo-NiSe2 CFC NA 10 1.52 Adv. Mater. 
2018, 30, 1802121

10 1.55FeCoNi LTH CFC 70
20 1.63

ACS Energy Lett. 
2016, 1, 445

Pt-CoS2nanosheet CC NA 10 1.55 Adv. Energy Mater. 
2018, 8, 1800935

Co-N-P
doped carbon

EG NA 10 1.60 Adv. Mater. 
2017, 29, 1604480

10 1.47
100 1.65CFeCoNiP/NF NF 31
500 1.86

This work

10 1.46FeCoNiP0.5S0.5-
FeCoNiP0S1

Ti foil NA
100 1.68

ACS Catal.
2018, 8, 9926

defective EG NiFe 
LDH

NF NA 20 1.50 Adv. Mater. 
2017, 29, 1700017

P-NiFe NF NA 10 1.51 Chem. Sci. 2018, 9, 1375
10 1.47MoNi4/MoO2-

MoS2/Ni3S2

NF
200 1.70

Nat. Commun. 
2017, 8, 15437

10 1.54Cu@NiFe LDH Cu foam NA
100 1.69

Energy Environ. Sci. 
2017, 10, 1820

10 1.45Janus Co/CoP NF NA
20 1.66

Adv. Energy Mater. 
2017, 7, 1602355

FeCoNi-HNTAs NF NA 10 1.429 Nat. Commun. 
2018, 9, 2452

MoS2/Ni3S2 NF NA 10 1.50 ACS Catal. 
2017, 7, 2357

Fe doped CoP Ti foil NA 10 1.60 Adv. Mater. 
2017, 29, 1602441

np-(Co0.52Fe0.48)2P free-
standing

NA 10 1.53 Energy Environ. Sci.
 2016, 9, 2257

Porous MoO2 NF NA 10 1.53 Adv. Mater. 
2016, 28, 3785

10 1.58NiCoP NF NA
100 1.82

Nano Lett. 
2016, 16,7718

10 1.56Co-P Cu foil 69
100 1.744

Angew. Chem. Int. Ed. 
2015, 54, 6251

Abbreviations: CC, carbon cloth; CFC, carbon fiber cloth; EG, exfoliated graphene; NF, Ni foam; LTH, layered triple hydroxide; 
HNTA, hybrid nanotube arrays.



Table S4. Summary of mass activity (MA) of (Fe, Co, Ni)-based electrocatalysts in 1 M NaOH aqueous 
solution.

Electrode Mass activity (A/g)
HER ( = 100 mV)

CFeCoNiP 7.43
CFeCoPa 5.83
CFeNiP 1.77
CCoNiP 3.64
CFePa 0.77
CCoP 1.10
CNiP 1.16

OER ( = 350 mV)
CFeCoNiP 62.81
CFeCoPa 41.37
CFeNiP 54.02
CCoNiP 13.75
CFePa 1.60
CCoP 6.33
CNiP 5.61

aACS Appl. Energy Mater., 2018, 1, 5298–5307



Table S5. Elemental composition (atomic %) analysis of film electrodes by EDX.

Electrode Fe (%) Co (%) Ni (%) P (%) O (%) Na (%)

HER

CFeCoNiP 25.8 30.0 27.3 0 15.1 1.8

Post-HER 25.4 25.1 24.6 0 21.8 3.1

CFeCoPa 36.1 49.0 0 0 14.9 0

CFeNiP 39.4 0 42.1 1.1 14.3 3.1

CCoNiP 0 36.2 30.9 3.6 24.4 4.9

OER

CFeCoNiP 21.2 24.2 22.4 1.3 26.4 4.5

Post-OER 8.6 9.0 8.1 3.1 54.0 17.2

CFeCoPa 21.0 24.9 0 2.9 43.2 8.0

CFeNiP 28.3 0 30.5 3.6 31.2 6.4

CCoNiP 0 24.6 23.2 6.9 40.0 5.3
aACS Appl. Energy Mater., 2018, 1, 5298–5307. 

Table S6. Elemental composition (atomic %) analysis of electrode surface by XPS.

Electrode Fe (%) Co (%) Ni (%) P (%) O (%)a Na (%)

HER

CFeCoNiP 9.8 11.0 10.9 4.6 60.4 3.3

Post-HER 9.0 9.5 9.7 0 71.8 0

OER

CFeCoNiP 7.2 8.1 7.6 3.1 70.3 3.7

Post-OER 6.5 7.0 6.6 0 79.9 0
aDue to adventitious organic residues, phosphate and water in the surrounding, oxygen is always present on 
samples surface exposed to the atmosphere, and the quantitation of oxygen content in these samples without 
argon ion sputter cleaning is not accurate.



Table S7. EXAFS fitting results for FeCoNi-based thick film under OCP condition in 1 M NaOH aqueous 
electrolyte. Amplitude reduction factor (S0

2) was fixed at 0.9. M is denoted as Fe, Co and Ni.
Fe K edge Co K edge Ni K edgeXAS metal  

K edges Fe-M Co-M Ni-M

OCP ( = 0 mV)

C.N. 9.5±0.1 9.5±0.1 9.5±0.1

R (Å) 2.65±0.01 2.57±0.01 2.54±0.01

E0 (eV) -6.6±0.3 2.5±0.4 -11.0±0.6

2 (10-3xÅ2) 9.4±0.1 7.1±0.2 8.0±0.2

R factor 0.0006 0.0041 0.0020



Table S8. EXAFS fitting results for FeCoNi-based thin film under OCP and operational conditions 
(HER/OER) in 1 M NaOH aqueous electrolyte. Amplitude reduction factor (S0

2) was fixed at 0.9. M is 
denoted as Fe, Co and Ni.

Fe K edge Co K edge Ni K edgeXAS metal  
K edges Fe-O Fe-M Co-O Co-M Ni-O Ni-M

OCP ( = 0 mV)

C.N. 4.3±0.2 9.6±0.9 5.5±0.1 9.5±0.2 5.8±0.1 9.6±0.6

R (Å) 1.99±0.01 3.09±0.02 2.06±0.01 3.16±0.01 2.03±0.01 3.10±0.01

E0 (eV) 16.4±1.5 -6.9±2.7 15.6±1.3 -10.1±2.2 4.7±1.5 9.0±2.8

2 (10-3xÅ2) 5.3±0.7 9.9±0.5 6.7±0.3 10.3±0.2 5.7±0.7 9.2±0.6

R factor 0.0131 0.0051 0.0114

HER ( = 800 mV)

C.N. 4.0±0.2 9.4±0.8 3.6±0.1 9.2±0.6 3.8±0.1 9.3±0.5

R (Å) 1.98±0.02 3.12±0.02 2.07±0.01 3.15±0.01 2.06±0.01 3.14±0.02

E0 (eV) 15.3±2.9 10.8±2.2 14.5±1.1 14.0±1.6 7.7±1.1 10.8±2.3

2 (10-3xÅ2) 9.4±0.3 10.1±0.4 5.2±0.6 6.5±0.5 1.4±0.4 9.3±0.6

R factor 0.0186 0.0163 0.0115

OER ( = 600 mV)

C.N. 4.2±0.2 7.5±0.7 5.3±0.3 7.8±0.5 5.5±0.2 7.7±0.3

R (Å) 1.72±0.01 2.58±0.03 1.94±0.02 2.69±0.02 1.95±0.01 2.96±0.02

E0 (eV) -5.4±1.1 10.6±3.2 14.1±3.0 -7.5±3.8 3.5±1.4 -10.7±2.1

2(10-3xÅ2) 3.2±0.4 9.6±0.7 5.6±0.6 8.3±0.6 5.8±0.9 9.5±0.3

R factor 0.0154 0.0101 0.0117



Table S9. Rc, Rf and Rct values extracted from EIS spectra of CFeCoNiP-CFeCoNiP and CFeCoNiP/NF-
CFeCoNiP/NF electrode-pair settings.

Electrode-pair Rc () Rf () Rct ()

OCP condition

CFeCoNiP-NF 1.8

CFeCoNiP 7.7

Overall Water Splitting ( = 350 mV)

CFeCoNiP-NF 1.6 0.5 6.7

CFeCoNiP 7.5 1.1 27.1
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