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Fig. S1 (a) FTIR spectrum, (c) XPS survey spectrum and (d) high-resolution N 1s 

XPS spectrum of MA sponge and the precursor; (b) EDS mapping of the precursor.

Fig. S2 Digital photos of the precursors before (a) and after (b) extensive sonication in 

deionized water.
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Fig. S3 XRD patterns of the 3DNCF.

Fig. S4 SEM images of the 3DNCF.



Fig. S5 SEM (a-b), TEM (c-d) images and (e) XPS survey spectrum and high-resolution 
elemental (f) C 1s, (g) N 1s and (h) Fe 2p spectra of Fe3N/3DNCF composite without 
adding glucose.

Fig. S6 Ex situ TEM images of Fe3N@C/3DNCF anode for the first cycle at a 
discharged state of a) 0.55 V and b) 0.01 V, and at a charged state of c) 1.0 V and d) 
3.0 V.



Fig. S7 (a) The galvanostatic charge and discharge voltage profile at 0.1 A g-1, (b) cycle 
performances of 3DNCF at 1 A g-1.

Table S1. ICP result of the Fe3N@C/3DNCF and Fe3N/3DNCF composites

Material Analyte Conc.Units Fe (wt. %) Fe3N (wt. %)

Fe3N@C/3DNCF Fe 1.4 mg/L 25.38 27.5

Fe3N/3DNCF Fe 1.35 mg/L 24.37 26.4



Table S2 Comparison of synthesis approach and cycling performance of 
Fe3N@C/3DNCF with previously reported metal nitrides anodes for SIBs.

Materials Synthesis approach Capacity Retention Reference
Ref. S2 G-VNQD-500 Hydrothermal and 

annealing at  NH3 
atmosphere

280 mA h g−1 after 
800 cycles at 240 
mA g−1

Adv. Energy Mater.  
2016, 6(6): 1502067

Ref. S4 Fe3N@C Electrospinning 
and two step 
annealing

280 mA h g−1 after 
300 cycles at 400 
mA g−1

Adv. Mater. 2018, 
1800525

Ref. S6 Mo2N Hydrothermal and 
annealing at  NH3 
atmosphere

180 mA h g−1 after 
300 cycles at 500 
mA g−1

Energy Storage 
Materials, 2019, doi: 
10.1016/j.ensm.2019
.04.007

Ref. S1 VNQD@NC HSs Hydrothermal and 
annealing at  NH3 
atmosphere

306 mAh g−1 after 
1400 cycles at 
1000 mA g−1

J. Mater. Chem. A,  
2019, 7(15): 9289-
9296

Ref. S3 Sn3N4 two step 
ammonolysis 
process  and 
annealing at  NH3 
atmosphere

152 mA h g−1 after 
50 cycles at 200 
mA g−1

J. Mater. Chem. A, 
2016, 4, 5081

Ref. S5 Ni3N Solution-based 
method and 
annealing at  NH3 
atmosphere

80 mA h g−1 after 
20 cycles at 423 
mA g−1

J. Mater. Chem. A, 
2013, 1, 6441–6445

Fe3N@C/3DNCF Solution-based 
method and  one 
step annealing

375 mA h g−1 after 
2000 cycles at 
1000 mA g−1

Our work



Fig. S8 The rate performance of (a) Fe3N@C/3DNCF and (b) Fe3N/3DNCF.

Fig. S9 Recorded electrochemical impedance spectra of Fe3N@C/3DNCF and 
Fe3N/3DNCF. The inset is the corresponding equivalent circuit.

Fig. S10 SEM images of Na3V2(PO4)3@C composites.



Fig. S11 (a) Typical XRD and (b) charge-discharge profiles of the Na3V2(PO4)3@C at 
0.1 A g-1.

Fig. S12 The SEM and TEM images of Fe3N@C/3DNCF after 2000 cycles.



Fig. S13 High-resolution XPS spectra of Fe3N@C/3DNCF after 2000 cycles. (a) 
Survey XPS spectra. High-resolution XPS spectra: (b) C 1s; (c) N 1s and (d) Fe 2p 
spectrum of Fe3N@C/3DNCF.


