Supporting Information for

Moisture-tolerant and high-quality α-CsPbI₃ films for efficient and stable perovskite solar modules

Ruihao Chen,^a Yong Hui,^b Binghui Wu,^a Yongke Wang,^b Xiaofeng Huang,^b Zhongyuan Xu,^a Pengpeng Ruan,^b Wuyong Zhang,^b Fangwen Cheng,^b Weijie Zhang,^b Jun Yin,^{*a} Jing Li^{*a} and Nanfeng Zheng^{*b}

^a Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.

^b State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

* Corresponding authors.

E-mails: jyin@xmu.edu.cn (J. Yin), lijing@xmu.edu.cn (J. Li); nfzheng@xmu.edu.cn (N. F. Zheng)

Figure S1. (a) Crystal structure ^[1] and (b) TG analysis of the $PbI_2 \cdot NMP$ compound. Inset shows the photograph of the corresponding crystal powders. Obviously, the color of $PbI_2 \cdot NMP$ compound is different from pristine PbI_2 powder (purchased from Alfa Aesar).

Figure S2. (a) XRD patterns and (b) UV-vis spectrum of CsPbI₃ film produced from $PbI_2 \cdot NMP$ compound.

Figure S3. Top-view SEM images of CsPbI₃ films derived from (a) $PbI_2 \cdot NMP$ compound and (b) NMP-doped precursor (PbI₂-NMP). It can be seen that $PbI_2 \cdot NMP$ compound have effectively improved the reproducibility and uniformity of CsPbI₃ film.

Figure S4. *J-V* curves of champion PSCs based on CsPbI₃ films from PbI₂·NMP compound or NMP-doped precursor (PbI₂-NMP). Considering the acylamino groups can interact with Cs⁺ ions, and induce electron cloud density enhancement on the surface of CsPbI₃ which is beneficial for the PV performance improvement of PSCs,^[2] the acylamino groups of NMP from PbI₂·NMP complex was utilized. PbI₂·NMP complex could effectively supply more binding sites than the precursor mixture solution (NMP as an additive) to facilitate the CsPbI₃ film growth. Thus, PbI₂·NMP

complex could effectively improve the density of CsPbI₃ film, and the corresponding devices have higher PCE.

Figure S5. (a) XRD patterns and (b) UV-vis spectra of α -CsPbI₃ and δ -CsPbI₃ films for a comparison.

Figure S6. Photograph image and molecular structure of $CsPbI_3 \cdot 18$ -crown-6 crystal. (Cs red, Pb dark green, I purple, C black, O light blue). Hydrogen atoms are omitted for clarity. In this work, a needle-like crystal structure analogue, $CsPbI_3 \cdot 18$ -crown-6, was first synthesized and determined by single-crystal X-ray diffraction. The framework of $CsPbI_3 \cdot 18$ -crown-6 crystal consists of 18-crown-6 capped Cs^+ and a chain (PbI_3^-). The result strongly verified the interaction of 18-crown-6 and Cs^+ ion.

Figure S7. The chelation structure of 18-crown-6, Cs⁺ and 18-crown-6-Cs⁺. (Cs red, C black, O light blue). Hydrogen atoms are omitted for clarity.

Figure S8. The images of water contact angles measured on (a) the $CsPbI_3$ -Crown film compared to (b) that on a $CsPbI_3$ film.

Figure S9. (a) PL and (b) UV-vis spectra of the CsPbI₃-Crown films produced with Crown in different concentrations with the comparison to those of the control (CsPbI₃) film.

Figure S10. XRD patterns of CsPbI₃-Crown films produced with Crown in different concentrations with the comparison to that of the control (CsPbI₃) film.

Figure S11. SEM images of the CsPbI₃-Crown films produced with Crown in different concentrations with the comparison to that of the control (CsPbI₃) film.

Figure S12. *J-V* curves of champion PSCs based on $CsPbI_3$ -Crown films produced with Crown in different concentrations. Here, it is understandable that the small

amount of crown ether would lead to the insufficient modification of perovskites, resulting the less improvement in photovoltaic performance. However, the excess crown ether mightily act as additional defect centers located at the interface, resulting the decreased device performance.

Figure S13. PCE statistics of 20 individual PSCs based on CsPbI₃-Crown films produced with Crown in different concentrations.

Figure S14. (a) XRD patterns and (b) UV-vis spectra of CsPbI₃-Crown films with the comparison to those of the CsPbI₃ films.

Figure S15. Top-view and cross-sectional SEM images of (a, b) CsPbI₃-Crown films compared to (c, d) CsPbI₃ films in devices.

Figure S16. The SEM image and elemental maps of the CsPbI₃-Crown film.

Figure S17. Steady-state PCE of the CsPbI₃-Crown device compared with that of CsPbI₃ PSC measured at V_{bias} of 0.90 and 0.77 V, respectively.

Figure S18. (a) XRD pattern and (b) TG analysis of CsI-Crown compound. The results demonstrated that CsI-Crown is very stable due to the strong interaction between Cs^+ from CsI and O atom of Crown.

Figure S19. ¹³C liquid-state NMR spectra of CsPbI₃-Crown solution dissolved with DMSO-d₆ with the Crown and CsI-Crown solutions as references. ¹³C NMR spectra showed the resonance signal of $\delta = 70.3$ ppm belonging to CH₂ group underwent significantly upfield shifts of $\Delta \delta = 0.38$, 0.45 ppm due to the interaction of Crown with CsI and CsPbI₃, respectively.

Figure S20. IR spectrum of CsPbI₃-Crown with the spectra of Crown and CsI-Crown as references. The IR spectrum of pure Crown displayed absorption bands in region of 1473 and 1348 cm⁻¹ which are attributed to the typical functional groups of C-H bending vibration of Crown. With the incorporation of CsPbI₃ and CsI, the corresponding vibration modes shifted. The stronger interaction between O atom of Crown and Cs⁺ of CsPbI₃ or CsI resulted in a shift in the vibrational wavenumber.

Figure S21. (a) ¹H NMR of different Crown contents and the Crown signal from three samples of CsPbI₃-Crown films, which were dissolved in DMSO-d₆. The fixed chlorobenzene content was regarded as calibration reference. (b) Relationship between integrated area (-CH₂ peak from Crown) and Crown contents. The Crown content of three samples CsPbI₃-Crown films is about ~0.021 mg. Each CsPbI₃-Crown film contains Crown about 0.007 mg corresponding to ~1 weight % with respect to CsPbI₃.

Figure S22. Pb 4f XPS spectra of CsPbI₃-Crown and CsPbI₃ films.

Figure S23. Steady-state PL spectra of CsPbI₃-Crown and CsPbI₃ films deposited on glass substrates. The excitation wavelength was set as 377.6 nm with filter chip.

Figure S24. Light intensity dependent V_{oc} in CsPbI₃-Crown devices compared with that of CsPbI₃ PSCs. The fitting line gave a slope of nk_BT/q , where n, k_B , *T*, and *q* are the ideality factor, Boltzmann constant, absolute temperature, and elementary charge, respectively.

Figure S25. OM images, the corresponding PL mapping and emission band mapping of the (a-c) CsPbI₃-Crown films with the comparisons to those in CsPbI₃ films (d-f).

Figure S26. Surface potential (SP) images of (a) CsPbI₃-Crown compared to those of (b) CsPbI₃ films at different bias voltages applied to the tip under dark condition. Insets are the corresponding topography images. As in the results, there is no obvious discrepancies in the morphology and surface roughness in the CsPbI₃-Crown film with a root-mean-square roughnesses (RMS) of 26.8 nm compared to 28.5 nm in the CsPbI₃ film. The homogeneous contrast of SP images indicated the uniform SP in both CsPbI₃-Crown and CsPbI₃ films. While, with decreasing the bias voltage at the tip from 0 V to -5 V, no obvious change can be observed in the CsPbI₃-Crown film with contrast to the more and brighter SP images in the CsPbI₃ film. These results

demonstrated that Crown passivation could effectively enhance the physical stability of CsPbI₃ perovskites under the electric-field driving by inhibiting the surface ion migration on the CsPbI₃.

Figure S27. Evaluation of the ions migration under electric-field driving by the EDS mapping for the CsPbI₃ films. (a) and (b) show the co-plane devices with interdigital electrodes on CsPbI₃ and CsPbI₃-Crown films, respectively. Red dotted rectangle represents the test region. The typical Cs element mapping of (c) CsPbI₃-Crown and (d) CsPbI₃ films at different bias voltages (from 0 V to -5 V) were representatively shown in the figure.

Figure S28. XRD patterns of (a) CsPbI₃-Crown and (b) CsPbI₃ films in ambient atmosphere (25 °C) at RH 85% with different aging time.

Figure S29. The UV-vis spectra of (a) $CsPbI_3$ -Crown film compared to those of (b) $CsPbI_3$ film accelerated aging in ambient atmosphere (25 °C) at RH 85% with different aging time.

Figure S30. The absorbance variation of (a) the CsPbI₃-Crown and CsPbI₃ films with the data extracted from Figure S29 at the wavelength of 680 nm, and (b) the zoomedin curves from the orange circle marked in (a). The intensity of absorbance of CsPbI₃-Crown films slightly decreased along time variation, while CsPbI₃ totally transformed to yellow δ phase within 100 min.

Figure S31. ¹³³Cs solid-state MAS NMR spectra of (a) CsPbI₃-Crown and CsPbI₃ before and after aging for 0.5 h at RH 85%, (b) CsI and CsI-Crown powders at 12 kHz MAS and 298 K. Inset is the corresponding amplified spectrum. As in the results, the characteristic peak centered at ~240 ppm belongs to the ¹³³Cs of δ -CsPbI₃.^[3] The peak centered at 89.4 ppm should be assigned to the ¹³³Cs of α -CsPbI₃. After Crown was introduced on CsPbI₃ surface, the center of ¹³³Cs peak was shifted to 83.8 ppm and much broader due to the interaction of Crown and CsPbI₃. The ¹³³Cs peak

intensity of α -CsPbI₃ was not obviously changed on the CsPbI₃-Crown, but evidently weaken in the CsPbI₃ after aging for 0.5 h. Moreover, the CsPbI₃ was partially degraded to the δ -CsPbI₃, while the CsPbI₃-Crown was more stable after aging for 0.5 h. The ¹³³Cs peak of cesium iodide was also shifted after Crown passivation. The above results indicated that Crown effectively inhibited the moisture invasion and further improved the phase stability of CsPbI₃ films.

Figure S32. (a)The top-view SEM image of the CuSCN film. (b) The cross-section SEM image of the CsPbI₃-Crown PSC based on CuSCN film as HTL. (c) *J-V* curve of the champion cell based on CsPbI₃-Crown film using CuSCN as HTL. (d) Operation stability of CsPbI₃-Crown devices measured at 85 °C in N₂ atmosphere. Error bars represent the standard error.

Figure S33. RS and FS mode-efficiency distribution in 6 individual CsPbI₃-Crown PSC modules by spin coating method.

Figure S34. *J-V* curves of the CsPbI₃-Crown based champion PSC module fabricated by blade coating method.

Device		$J_{\rm sc}/{\rm mA}{\cdot}{\rm cm}^{-2}$	$V_{\rm oc}/{ m V}$	FF/%	η
PbI₂∙NMP	Reverse	18.73	0.89	75.19	12.53
	Forward	18.81	0.91	76.13	13.03
PbI ₂ -NMP	Reverse	18.41	0.83	60.50	9.24
	Forward	18.37	0.82	55.51	8.36

Table S1. Photovoltaic parameters of the champion efficiency for $CsPbI_3$ PSCs derived from $PbI_2 \cdot NMP$ and $PbI_2 - NMP$.

Table S2. Photovoltaic parameters of CsPbI₃-Crown PSCs with different concentrations of Crown.

Device		$J_{\rm sc}/{\rm mA}\cdot{\rm cm}^{-2}$	V _{oc} /V	FF/%	η/%
0.5 mg mL ⁻¹	Reverse	19.89	0.99	76.11	14.91
	Forward	19.60	0.99	75.65	14.73
1 mg mL ⁻¹	Reverse	20.56	1.06	77.61	16.91
	Forward	20.51	1.05	77.12	16.76
2 mg mL ⁻¹	Reverse	19.52	1.01	74.90	14.74
	Forward	19.32	0.98	76.68	14.55

 Table S3. Photovoltaic parameters of the champion efficiency of CsPbI₃-Crown PSCs

 compared with CsPbI₃ PSCs.

Device		$J_{\rm sc}/{\rm mA}{\cdot}{\rm cm}^{-2}$	V _{oc} /V	FF/%	η/%
CsPbI ₃	Reverse	18.73	0.89	75.19	12.53
	Forward	18.81	0.91	76.13	13.03
C-DhJ Crearry	Reverse	20.56	1.06	77.61	16.91
CSPDI ₃ -Crown	Forward	20.51	1.05	77.12	16.76

Davias		Average		
Device		PCE%		
CaDhI	Reverse	15.8±0.9		
CSP01 ₃	Forward	15.6±1.0		
CaDh I Crown	Reverse	11.7±1.07		
CSP01 ₃ -Crown	Forward	11.1±1.4		

 Table S4. The average efficiencies of CsPbI₃-Crown PSCs compared with CsPbI₃

 PSCs.

Table S5. Photovoltaic parameters of the champion efficiency for CsPbI₃-Crown PSC based on CuSCN HTL.

Device		$J_{\rm sc}/{\rm mA}{\cdot}{\rm cm}^{-2}$	$V_{\rm oc}/{ m V}$	<i>FF/</i> %	η/%
CsPbI ₃ -Crown	Reverse	17.93	0.95	68.90	11.74
	Forward	17.98	0.95	68.11	11.63

Table S6. Photovoltaic parameters of the champion efficiency of CsPbI₃-Crown PSCs module (active area of 8 cm²).

Device		$J_{\rm sc}/{\rm mA}{\cdot}{\rm cm}^{-2}$	$V_{\rm oc}/{ m V}$	FF/%	η/%
Spin coating	Reverse	4.10	4.05	71.45	11.87
Spin coating	Forward	4.01	4.00	70.32	11.25
Diada agoting	Reverse	4.05	3.84	69.02	10.73
	Forward	3.98	3.86	68.60	10.54

Activo			Aging condition						
Encapsulation Or not	area (cm ²)	Initial PCE (%)	Test condition	Testing atmosphere	Testing temperature (°C)	Aging time (h)	% of Initial PCE after aging Time	Reference	Acceptation date
Not	0.10	16.91	Dark	Air, 20%	25	2000	90%		
Not	0.10	11.74	Dark	N ₂	85	1000	91%	This work	
Yes	8.00	11.87	MPP	Air, 60%	25	515	95%		
Not	0.12	10.40	Dark	Air, <10%	RT	500	No decay	E 4 J	00.07.2010
Not	0.12	18.40	MPP	N ₂		500	92%	[4]	09-07-2019
Not	0.12	16.62	Dark	Air, 10±5%	20-25	720	No decay	[5]	20-09-2019
Not	0.07	14.10	Dark	N ₂	RT	168	87%	[6]	23-06-2019
Not	0.11	15.71	Dark	Air, 20-30%	25	1440	92%	[7]	26-09-2018
Not	0.11	15.07	Light soaking	N ₂	25	500	98%	[8]	17-03-2018
Not	0.09	10.74	Dark	Air, 45-55%	RT	500	75%	[2]	25-01-2018
1101	0.07	10.77	Durk	N ₂	60	500	80%	[~]	25 01 2010
Not	0.10	10.77	Dark	15-25%	RT	720	No decay	[9]	07-09-2016

Table S7. Comparison of our device with published CsPbI₃-based PSCs.

RT represents room temperature.

MPP	represents	maximum	power	point	tracking.

References

F. Cheng, X. Jing, R. Chen, J. Cao, J. Yan, Y. Wu, X. Huang, B. Wu, N. F. Zheng, Inorg. Chem. Front. 2019, 6, 2458.

[2] B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Nat. Commun. 2018, 9, 1076.

[3] D. J. Kubicki, D. Prochowicz, A. Hofstetter, S. M. Zakeeruddin, M. Gratzel, L. Emsley, J. Am. Chem. Soc. 2017, 139, 14173.

[4] Y. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Grätzel, Y. Zhao, Science 2019, 365, 591.

- [5] Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, Angew. Chem. Int. Ed. 2019, 58, 16691.
- [6] X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian, B. W. Larson, Q. Zhao, C. Qin, F. Li,G. Shi, C. Stewart, J. Hu, X. Zhang, J. M. Luther, S. Duhm, W. Ma, Adv. EnergyMater. 2019, 9, 1900721.
- [7] P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, X. Li, X. Yang, Z. Yin, J. You, Nat. Commun. 2018, 9, 2225.
- [8] K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, L. Shengzhong, Nat. Commun. 2018, 9, 4544.
- [9] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore,J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92.