Supporting Information

Microwave-Assisted Evolution of WO_3 and WS_2/WO_3

Hierarchical Nanotrees

Noho Lee^{a†}, Junghyeok Kwak^{a†}, Ji Hye Kwak^b, Sang-Mun Jung^a, Jaerim Kim^a, Anupam Giri^a, Kaliannan Thiyagarajan^a, Yong-Tae Kim^a, Sunshin Jung^{b*}, Jong Kyu Kim^{a*} and Unyong Jeong^{a*}

Figure S1. (a) TEM image taken from overlapped WO₃ nanoneedles. Lattice spacing with various directions are visible. (b) Fast Fourier transform (FFT) image obtained from (a). Bright spots are visible on yellow circle which corresponds to WO₃ (002) d-spacing.

Figure S2. Camera images of microwave heating setup used for temperature and absorption measurement.

Figure S3. Schematic description of aligned cations and anions along with microwave irradiation

Figure S4. SEM images of WO₃ helix-needle samples prepared by non-microwave conventional heating with (a) 375 °C, 60 min., (b) 375 °C, 120 min., (c) 400 °C, 30 min., (d) 400 °C, 60 min.

Cyclic Voltammonograms at various scan rate

To compare the surface area, cyclic voltammograms of the WO₃ nanotree and the WO₃ nanohelix were collected at various scan rate with region of $0.15 \sim 0.25$ V_{RHE}. W foil was also used as control sample. As the scan rate increases, the WO₃ nanotree sample shows a significantly larger increase in current density than the other samples (Fig. S5c). The current density change at a different scan rate is mainly due to the scan rate dependence of capacitive current. In addition, capacitive current depends on the surface area of electrode. Thus, the larger increase in current density with increasing scan rate for the WO₃ nanotree compared the WO₃ nanohelix and the W foil can be attributed to the larger surface area of the nanotree structure. Although small faradaic current caused by the formation of H_xWO₃ in the measured region (0.15 ~ 0.25 V_{RHE}) can contributed to the increase in current as the scan rate increases, the increase in capacitive current is expected to be dominante.¹

Figure S5. Cyclic voltammograms of (a) W foil, (b) WO₃ nanohelix and (c) WO₃ nanotree collected at various scan rate with region of $0.15 \sim 0.25 V_{RHE}$. The insets show magnified

Electrochromic reaction of WO₃ in cathodic condition

As shown in Fig. S6a, when the $-0.3 V_{RHE}$ was applied to the WO₃ nanohelix using a chronoamperometry, the color changes from light grey to deep blue in a few seconds (Fig. S6a and S6b). The color change of the WO₃ sample is attributed to the injection of electrons and ions in the WO₃, which can be expressed as follows^{2,3}:

$$WO_3 + xH^+ + xe^- \rightarrow H_xWO_3$$

In addition, electrochromism of the WO₃ in the WS₂/WO₃ nanotrees was investigated by using XPS. For the electrochromic reaction, -0.3 V_{RHE} was applied to the WS₂/WO₃ nanotree sample for 60s using the chronoamperometry in 0.5 M H₂SO₄. Fig. S7 shows the XPS spectrum of O1s for WS₂/WO₃ nanotree sample before and after the electrochromic reaction.

As shown in Fig. S7a, the spectrum shows the major peak at the binding energy of 530.16 eV, assigned to the O^{2-} of WO₃. After the electrochromic reaction, the peak shows broadening and shift to higher binding energy, which can be deconvoluted into two components. As shown in Fig. S7b, the higher energy peak at 531.63 eV can be assigned to the hydroxyl bond (O-H), which indicates the formation of H_xWO₃.^{2,3}

Figure S6. Electrochromic reaction of the WO₃ nanohelix sample submerged in 0.5M H_2SO_4 electrolyte (a) before and (b) after applying potential of -0.3 V_{RHE} .

Figure S7. XPS spectrum of O 1s for WS_2/WO_3 nanotree sample (a) before and (b) after applying the -0.3 V_{RHE} for 60s in 0.5 M H₂SO₄.

WS₂ nanosheet preparation

For evaluating the catalytic activity of pure WS₂, WS₂ nanosheet was prepared through following process.

The versatile liquid phase exfoliation (LPE) method is used to prepare WS_2 nanosheets. Briefly the pristine WS_2 (Sigma Aldrich) was sonicated in N-Methyl-2-pyrrolidone (NMP), with initial concentration of 50 mg/ml was sonicated for 1 hour at 30% amplitude using a horn tip sonicator (Sonic Vibra-CV334). The solution was then centrifuged (CYROZEN 1736MGR) at 1000 rpm for 30 min to remove the contaminants (supernatant) from the starting material. The collected sediment was redispersed in fresh NMP and sonicated for 6 hours under the same condition. Which gives a polydispersed WS_2 solution from which the nanosheets can be isolated through cascade-centrifugation process.

The polydispersed WS₂ solution was first centrifuged at 500 rmp for 1 hour to remove the largest aggregates. The supernatant was then centrifuged at 1500 rpm for 1 hour and the collected supernatant was further centrifuged at 4500 rpm and collected the sediment by discarding the supernatant contains the smallest nanosheets. The sediment has been dried to remove solvents before fabricating the working electrode for electrochemical studies. For fabricating the working electrode, WS₂ nanosheet powder (10mg) was mixed with the catalyst inks (water 3.98mL, IPA 1mL, Nafion 0.02mL, total 5mL), using a method reported previously.^{4,5} After the solution was homogenized by sonication, the 12.5uL ink was dropped onto a tungsten foil (0.25 cm², 0.05 mm in thickness,

purity: 99.95%, Nilaco, Japan,) then evaporated at room temperature to form a thin film of catalyst layer.

The fabricated WS2 working electrode was evaluated by using the three-electrode system.

Figure S8. Schematic model of one S-W-S layer slab in 1T phase WS₂ and high-resolution TEM images of 1T phase WS₂. Main features of note are the linear arrangement of S-W-S atoms in the 1T phase WS₂, which is expressed as diagonal patterns in high-resolution TEM.

Electrodes	Onset potential [mV]	Tafel slope [mV/dec]	Overpotential (mV) at 10 mA/cm ²	$R_{ct} [\Omega]$	Ref.
20% Pt/C	N/A	30	30	N/A	6
Pt single atom-defective graphene	N/A	25	23	N/A	6
Pt-Graphdiyne	N/A	46.6	N/A	N/A	7
Pt-N-doped graphene nanosheets	N/A	29	N/A	N/A	8
$Mo_2TiC_2T_x$ -Pt single atom	N/A	30	30	12	9
Ru-MoO ₂	55	44	29	N/A	10
Ru@N-doped C	9.5	30	13.5	43.7	11
Porous Pd NP	N/A	30	N/A	N/A	12
Pd nanoparticles-carbon nitride composite	12	35	55	N/A	13
Pd-graphene	N/A	46	N/A	N/A	14
Rh-MoS ₂	N/A	24	47	N/A	15
Ir nanowires	N/A	30.1	23.1	N/A	16

Table S1. Comparison of electrochemical performance for noble-metal based catalysts

Table S2. Comparison of electrochemical performance for TMDCs based catalysts

Samples	Onset potential [mV]	Tafel slope [mV/dec]	Overpotential (mV) at 10 mA/cm ²	$R_{ct}[\Omega]$	Ref
WS ₂ Nanosheets with S vacancies	N/A	83.1	178	1.81	17
W ₂ C@WS ₂ alloy nanoflowers	~170	55.4	N/A	~200	18
WS ₂ /CoS ₂ array on Carbon cloth	N/A	64	146	N/A	19
N-enriched C foam@WS ₂ nanoflakes	N/A	58.7	153	3.2	20
Te-doped WS ₂ nanosheets	N/A	94	213	N/A	21
Nb-doped WS ₂ nanosheets	N/A	97	N/A	14.76	22
10% Ni-doped WSe ₂	N/A	86	259	N/A	23
Hierarchical WS ₂ film	N/A	54	137	N/A	24
S-doped graphene/WS ₂	140	53	250	N/A	25
Fullerene-like WS ₂ supported Pd nanoparticles (Pd/WS ₂)	~47	82.4	130	90	26
1T-WS ₂ film	347	95	N/A	225	27
Edge exposed 1T phase WS ₂ /WO ₃ Nanohelix	N/A	N/A	168	8	28

WS ₂ /WO ₃ Nanotree N/A	N/A	218	9.8	This work
---	-----	-----	-----	--------------

Reference

- 1 A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications, 2nd Edition*, WILEY, 2nd edn., 2000.
- 2 S. R. Bathe and P. S. Patil, *Solid State Ionics*, 2008, **179**, 314–323.
- H. Wang, R. Fan, J. Miao, J. Chen, S. Mao, J. Deng and Y. Wang, *J. Mater. Chem. A*, 2018, 6, 6780–6784.
- J. Suntivich, H. A. Gasteiger, N. Yabuuchi and Y. Shao-Horn, *J. Electrochem. Soc.*,
 2010, 157, B1263.
- 5 Y. Garsany, O. A. Baturina, K. E. Swider-Lyons and S. S. Kocha, *Anal. Chem.*, 2010,
 82, 6321–6328.
- Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang, Y. Lin, T. Yuan, F. Zhou, Y. Hu, Z. Yang,
 C. Zhao, J. Wang, C. Zhao, Y. Hu, G. Wu, Q. Zhang, Q. Xu, B. Liu, P. Gao, R. You,
 W. Huang, L. Zheng, L. Gu, Y. Wu and Y. Li, *J. Am. Chem. Soc.*, 2019, 141, 4505–4509.
- X. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu, R. Si and T. B. Lu, *Angew*.
 Chemie Int. Ed., 2018, 57, 9382–9386.
- N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K.
 Sham, L. M. Liu, G. A. Botton and X. Sun, *Nat. Commun.*, 2016, 7, 1–9.
- Jinqiang Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y.
 Gogotsi and G. Wang, *Nat. Catal.*, 2018, 1, 985–992.
- 10 P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su and Q. Chen, J. Mater. Chem. A, 2017,

5, 5475–5485.

- J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong and J. B. Baek, *Nat. Nanotechnol.*, 2017, 12, 441–446.
- S. Liu, X. Mu, H. Duan, C. Chen and H. Zhang, *Eur. J. Inorg. Chem.*, 2017, 2017, 535–539.
- 13 T. Bhowmik, M. K. Kundu and S. Barman, ACS Catal., 2016, 6, 1929–1941.
- S. Ghasemi, S. R. Hosseini, S. Nabipour and P. Asen, *Int. J. Hydrogen Energy*, 2015, 40, 16184–16191.
- Y. Cheng, S. Lu, F. Liao, L. Liu, Y. Li and M. Shao, *Adv. Funct. Mater.*, 2017, 27, 1700359.
- 16 L. Fu, F. Yang, G. Cheng and W. Luo, *Nanoscale*, 2018, **10**, 1892–1897.
- 17 Q. Zhu, W. Chen, H. Cheng, Z. Lu and H. Pan, *ChemCatChem*, 2019, **11**, 2667–2675.
- T. Phan, S. Young, T. Hyung, H. Won, Q. Van Le and I. T. Kim, *Appl. Surf. Sci.*, 2020, 504, 114389.
- 19 J. Wu, T. Chen, C. Zhu, J. Du, L. Huang, J. Yan, D. Cai, C. Guan and C. Pan, ACS Sustain. Chem. Eng., 2020, 8, 4474–4480.
- 20 H. Li, A. Li, Z. Peng and X. Fu, Appl. Surf. Sci., 2019, 487, 972–980.
- Y. Pan, F. Zheng, X. Wang, H. Qin, E. Liu, J. Sha, N. Zhao, P. Zhang and L. Ma, J. Catal., 2020, 382, 204–211.
- 22 M. E. Pam, J. Hu, Y. S. Ang, S. Huang, D. Kong, Y. Shi, X. Zhao, D. Geng, S. J.

Pennycook, L. K. Ang and H. Y. Yang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 34862–34868.

- 23 S. R. Kadam, A. N. Enyashin, L. Houben, R. Bar-Ziv and M. Bar-Sadan, *J. Mater. Chem. A*, 2020, **8**, 1403–1416.
- M. Wang, L. Zhang, M. Huang, Q. Zhang, X. Zhao, Y. He, S. Lin, J. Pan and H. Zhu,
 J. Mater. Chem. A, 2019, 7, 22405–22411.
- A. Kagkoura, M. Pelaez-Fernandez, R. Arenal and N. Tagmatarchis, *Nanoscale Adv.*, 2019, 1, 1489–1496.
- P. Xiao, J. G. Buijnsters, Y. Zhao, H. Yu, X. Xu, Y. Zhu, D. Tang, J. Zhu and Z. Zhao,
 J. Catal., 2019, **380**, 215–223.
- H. U. Kim, V. Kanade, M. Kim, K. S. Kim, B. S. An, H. Seok, H. Yoo, L. E. Chaney,
 S. Il Kim, C. W. Yang, G. Y. Yeom, D. Whang, J. H. Lee and T. Kim, *Small*, 2020, 16, 1905000.
- 28 N. Lee, I. Y. Choi, K. Y. Doh, J. Kim, H. Sim, D. Lee, S. Y. Choi and J. K. Kim, J. Mater. Chem. A, 2019, 7, 26378–26384.