Supporting Information

Hierarchical architectures of mesoporous Pd on highly ordered TiO₂ nanotube arrays for electrochemical CO₂ reduction

Jinshuo Zou,^a Muhammad Iqbal,^{b,c} Amruthalakshmi Vijayakumar,^a Caiyun Wang,^a Douglas R. Macfarlane,^d Yusuke Yamauchi,^{b,c} Chong-Yong Lee,*^a Gordon G. Wallace*^a

^a ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia

^b Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China

^c School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), University of Queensland, Brisbane, QLD 4072, Australia

^d School of Chemistry, Monash University, Clayton, VIC 3800, Australia

Corresponding Author

- * Chong-Yong Lee. E-mail: cylee@uow.edu.au.
- * Gordon G. Wallace. E-mail: gwallace@uow.edu.au.

Sample	Structure	Electrolyte	Potential (V vs. RHE)	Faradaic efficiency (%)	Reference
Pd	~5 nm Pd	2.8 M KHCO ₃	-0.05 V ~	Formate: 86	Min and
nanoparticles	nanoparticles on		-0.25 V	to 94 %	Kanan ^[1]
	carbon particles				[2]
Pd	3.7 nm	1 M KHCO ₃	-0.1 V ~	Formate:	Gao et al. ^[2]
nanoparticles	nanoparticles		-0.2 V	~98 %	
Boron-doped	$4.1 \pm 0.5 \text{ nm}$	0.1 M	-0.5 V	Formate:	Jiang et al.
Pd		KHCO ₃		70%	[3]
Pd	\sim 4.2 nm Pd	0.5 M	-0.15 V	Formate:	Takashima
nanoparticles	nanoparticles	NaHCO ₃		71%	et al. ^[4]
Pd@TiO ₂ /	Pd nanoparticles	0.5 M	~ -0.2 V	Formate:	Melchionna
Carbon	(1.5 nm) shielded	NaClO ₄	vs. RHE	~95% in the	et al. ^[5]
Nanohorns	within the TiO ₂			initial 5 min,	
	phase			40% after 1 h	
$RuO_2 + TiO_2$	RuO ₂ :TiO ₂ =35:65	$0.05M H_2SO_4$	-0.9 V	Formate:	Bandi et al.
	(mole percent)	(pH = 12)	vs.	~2%	[6]
			Hg ₂ SO ₄		
$RuO_2 +$	$RuO_2:MoO_2:TiO_2=$	$0.05M H_2SO_4$	-0.9 V	Formate:	Bandi et al.
$MoO_2 + TiO_2$	25:30:45 (mole	(pH = 12)	vs.	<1%	[6]
	percent)		Hg ₂ SO ₄		
$RuO_2 +$	RuO ₂ :Co ₃ O ₄ :SnO ₂ :	$0.05 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	-0.9 V	Formate:	Bandi et al.
$Co_{3}O_{4} +$	$TiO_2 = 20:10:8:62$	(pH = 12)	vs.	18%	[6]
$SnO_2 + TiO_2$	(mole percent)		Hg ₂ SO ₄		
mPd/TNTAs	MesoporousPd-	0.5 M	-0.1 V	Formate:	This work
	TiO ₂ nanotube	NaHCO ₃		88%	
	hierarchical				
	structures				

Table S1. Summary of reported Pd-based catalysts for CO_2 electroreduction with formate as a targeted product

Fig. S1 SEM images of TiO₂ nanotube arrays of different tube lengths: (a) 1 μ m, (b) 2 μ m, (c) 3 μ m, (d) 6 μ m, (e) 10 μ m, (f) 20 μ m.

Fig. S2 SEM images of mPd/TNTAs with higher resolution.

Fig. S3 SEM images of mPd/TNTAs with different tube lengths: (a) 1 μ m, (b) 2 μ m, (c) 3 μ m, (d) 6 μ m, (e) 10 μ m, (f) 20 μ m.

Fig. S4 SEM images of mPd/TNTA samples with different electrodeposition time: (a) 1 min, (b) 2 min, (c) 3 min, (d) 5min

Fig. S5 Current-time curves of mPd/TNTAs and Pd/TNTAs during the electrodeposition.

Figure S6. FTIR of pure P123, as prepared mPd/TNTAs containing P123 micelles, and after immersing in water for 24 h.

Fig. S7 (a) the linear relationship between the formate concentration and the relative area (vs. DSS); (b) the 1H-NMR spectrum for formate. The single peak at 8.44 ppm coresponding to the H in formate and the peak at 0.00 ppm represents the internal standard DSS. The relative areas were calculated based on the equation:

Relative area(*Formate*) = *Peak area at* 8.44 *ppm*/*Peak area at* 0.00 *ppm*

Fig. S8 Comparison of H₂ faradaic conversion efficiencies of mPd/TNTAs and Pd/TNTAs as a function of applied potential (a), H₂ faradaic conversion efficiencies of mPd/TNTAs with different mPd loading time (b) and different length of the TiO₂ nanotube arrays of mPd/TNTAs (c). (a, b) based on TNTAs of 2 μ m; (a, c) mPd loading time of 2 min, and (b, c) at -0.1 V vs. RHE. All experiments were performed in 0.5 M NaHCO₃ aqueous solution under constant purging of CO₂ (20 mL min⁻¹) for 1 h.

Fig. S9 Current density-time curves of mPd/TNTAs at the potential range of 0 to -0.5 V vs. RHE.

Fig. S10 Tafel plot of the mPd/TNTAs at the potentials between 0 to -0.3 V vs. RHE.

Fig. S11 The long term CO_2RR stability test of the mPd/TNTAs samples performed at - 0.10 V *vs.* RHE. Inset showing the SEM of mPd/TNTAs after the 4 h electrochemical CO_2RR .

Fig. S12 (a) XRD pattern and (b) XPS spectrum of the mPd/TNTAs after CO_2 reduction performance test of 4 hours.

Fig. S13 (a) Current density vs. time of mesoporous Pd on carbon paper. SEM image of (b) carbon paper, (c-d) mesoporous Pd on carbon paper before test, and (e-f) after test. (d) and (f) are the enlarged areas in the selected areas in (c) and (e), respectively. The CO₂RR performace test were conducted in CO₂ saturated NaHCO₃ (0.5M) aqueous solution under constant purging of CO₂ (20 mL min⁻¹) for 1 h. The mesoporous Pd on carbon paper was electrodeposited for 2 min.

Fig. S14 Current density-time curves of mPd/TNTAs with (a) different Pd layer thicknesses and TiO_2 (b) nanotube lengths, with an applied potential of -0.10 V *vs.* RHE.

Fig. S15 CV measurements of (a) mPd-TNTAs (2 μ m) with different Pd deposition time; (b) mPd-TNTAs with different TNTAs lengths, the loading time in (b) is 2 min. All the measurements were performed in 0.5 M H₂SO₄.

Fig. S16 Current density-time curves of mPd/TNTAs with different initial pH. All experiments were performed in 0.5 M NaHCO₃ aqueous solution under constant purging of CO₂ (20 mL min⁻¹) for 1 h using the mPd/TNTAs of 2min mesoporous Pd loading and TiO₂ tubes of 2 μ m.

References

- [1] X. Min, M. W. Kanan, J. Am. Chem. Soc. 2015, 137, 4701-4708.
- [2] D. Gao, H. Zhou, F. Cai, D. Wang, Y. Hu, et al., *Nano Res.* **2017**, *10*, 2181-2191.
- [3] B. Jiang, X.-G. Zhang, K. Jiang, D.-Y. Wu, W.-B. Cai, J. Am. Chem. Soc. 2018, 140, 2880-2889.
- [4] T. Takashima, T. Suzuki, H. Irie, *Electrochemistry* **2019**, *87*, 134-138.
- [5] M. Melchionna, M. V. Bracamonte, A. Giuliani, L. Nasi, T. Montini, et al., *Energ. Environ. Sci.*, **2018**, *11*, 1571-1580.
- [6] A. Bandi, J. Electrochem. Soc., 1990, 137, 2157.