Supporting information

High-dispersion Ultrafine Shell-like Nano-Pt with Efficient Hydrogen Evolution Evolved via Metal Boron Organic Polymers

Xue Zhao,^a Ziqiong Yang,^a Wenjing Wang,^b Yuxin Li,^d Xiaohai Zhou*^{a,e} and Haibo Zhang*^{a,c}

- a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. *E-mail:* haibozhang1980@gmail.com; zxh7954@whu.edu.cn
- **b** The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- c National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
- **d** Key Laboratory of Function Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
- e Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan 430072, P. R. China

*Corresponding Author

Prof. Dr. Haibo Zhang, *E-mail*: haibozhang1980@gmail.com, Prof. Dr. Xiaohai Zhou, *E-mail*: zxh7954@whu.edu.cn

Dodecahydro-*closo*-dodecaborate dianion (*closo*- $[B_{12}H_{12}]^{2-}$) has the properties of a reducing agent

The principle of reduction of *closo*- $[B_{12}H_{12}]^{2-}$ is similar to that of NaBH₄. Due to the strong polarization of B, each hydrogen atom carries 0.00823*e* in *closo*- $[B_{12}H_{12}]^{2-}$ (while the core cage structure composed of B is enriched with a large amount of negative charge).^{1,2} However, compared to H⁻¹ in NaBH₄, *closo*- $[B_{12}H_{12}]^{2-}$ is relatively less reductive and can only reduce some precious metal ions to the corresponding zero-valent state in a mild manner (such as Au³⁺, Pd²⁺, Pt⁴⁺ and Ag⁺).³⁻⁷

Figure S1. Crystal structure of M-BOPs (solvent molecules have been hidden for clarity). **a-b**) Unit cell views and **c**) wide view of M-BOPs crystal

Figure S2. LSV curve obtained with MBOPs as catalyst

Table S1. Overpotentials of Pt/MBOPs with other recently reported Pt-based E-HER catalysts in1M KOH.

Catalyst	Electrolyte	η ₁₀ (mV)	Information Sources
Pt/MBOPs	1M KOH	22.8	This work
Pt/C	1М КОН	36.1	This work
Pt/OLC	1М КОН	38	Nature Energy, 2019, 4, 512-518
PtNi-O/C	1M KOH	39.8	Journal of the American Chemical Society, 2018, 140, 9046-9050
PtNWs/SL-Ni(OH)2	1М КОН	70	Nature Communications, 2015, 6, 6430
NiOx/Pt ₃ Ni	1M KOH	40	Angewandte Chemie International Edition, 2016, 55, 12859
Pt ₃ Ni ₂ -NWs/SC	1M KOH	42	Nature Communications, 2017, 8, 14580
Mo2C@NC@Pt	1M KOH	47	ACS Applied Materials & Interfaces, 2019,11, 4047-4056
Pt on WS ₂	1M KOH	45	Advanced Materials, 2018, 30, 1704779
Pt/NiO@Ni/NF	1М КОН	34	ACS Catalysis, 2018, 18, 8866-8872
Pt/Ni(HCO ₃) ₂	1М КОН	44	Angewandte Chemie International Edition, 2019, 58, 5432-5437
CDs/Pt PANI	1М КОН	56	Applied Catalysis B: Environmental, 2019, 257, 117905
A-CoPt-NC	1M KOH	32	Angewandte Chemie International Edition, 2019, 58, 9404
C Pt@ZIF-67	1M KOH	32	Journal of Materials Chemistry A, 2018, 6, 1376-1381
Pd/Cu-Pt	1M KOH	22.8	Angewandte Chemie International Edition, 2017, 56, 16047
PtCoFe@CN	1М КОН	45	ACS Applied Materials & Interfaces, 2017, 9, 3596-3601

hydrogen evolution of ammonia borane.				
Catalyst	T (°C)	TOF _{molH2} molPt ⁻¹ min ⁻¹	Information Sources	
Pt/MBOPs	25	1654.9	This work	
BOPs@Pt	25	131	ChemCatChem, 2019, 11, 2362-2369	
SiO2@Pt@NGO	25	324.6	Sustainable Energy Fuels, 2017, 1, 2128-2133	
Pt@MIL-101	RT	~414	Journal of the American Chemical Society, 2012, 134, 13926-13929	
Pt/CNT	30	~414	Journal of the American Chemical Society, 2014, 136, 16736-16739	
Pt-CNTs-O-HT	25	~580	ACS Catalysis, 2016, 6, 6892-69059	
Pt-CNT	30	567	Chemical Communication, 2014, 50, 2142-2144	
Pt/CeO ₂	25	182	Chemical Communication, 2012, 48, 10207-10209	
Pt ₂₅ Pd ₇₅ NPs	25	69.76	Nanoscale, 2020,12, 638-647	
PtAuNi	25	496	Nano Energy 2016, 23, 145-152	
NiPt@MIL-101	50	25.25	Inorganic Chemistry, 2017, 56, 19, 11938-11945	
PtNi@PVP	RT	511	ACS Applied Materials & Interfaces, 2014, 6, 12429-12435	
Pt-Ni/NiO	30	1240.3	ACS Applied Materials & Interfaces, 2017, 9, 3749-3756	
Pt ₃ Ni ₇ O-NGO	25	709.6	Catalysis Science & Technology, 2017, 7, 5135-5142	
Pd-Co	35	118.25	International Journal of Hydrogen Energy, 2017, 42, 27055-27065	
Pt-CoCu@SiO2	30	272.8	ACS Sustainable Chemical & Engineering, 2017, 5, 1675-1684	
PtCo@PG	30	461.17	International Journal of Hydrogen Energy, 2017, 42, 26617-26625	
Pt1Co1Ni2-BOFs	25	1490	ACS Applied Materials & Interfaces, 2019, 11, 26, 23445-23453	

Table S2. TOF value of Pt/MBOPs with other recently reported Pt-based catalysts in hydrolysis hydrogen evolution of ammonia borane.

Figure S3. XPS spectrum of Pt/MBOPs after reused. **a**) Binding energy region of nickel and **b**) Binding energy region of platinum

Figure S4. XRD spectrum of Pt/MBOPs after reused

Figure S5. SEM images (a-b) and TEM images (c-d) of Pt/MBOPs after reused

References

- B. R. S. Hansen, M. Paskevicius, M. Jørgensen, and T. R. Jensen, *Chemistry of Materials*, 2017, 29, 3423-3430.
- N. Jiao, Y. Zhang, L. Liu, J. M. Shreeve and S. Zhang, *Journal of Materials Chemistry A*, 2017, 5, 13341–13346
- B. Qi, L. Du, F. Yao, S. Xu, X. Deng, M. Zheng, S. He, H. Zhang and X. Zhou, ACS Applied Materials & Interfaces, 2019, 11, 23445-23453.
- X. Zhao, Y. Fu, C. Yao, S. Xu, Y. Shen, Q. Ding, W. Liu, H. Zhang and X. Zhou, *ChemCatChem*, 2019, 11, 2362-2369.
- 5. X. Zhao, C. Yao, H. Chen, Y. Fu, C. Xiang, S. He, X. Zhou and H. Zhang, Journal of Materials Chemistry A, 2019, 7, 20945-20951.
- B. Qi, C. Wu, L. Xu, W. Wang, J. Cao, J. Liu, S. Zhang, D. Gabel, H. Zhang and X. Zhou, *Chemical Communications*, 2017, 53, 11790-11793.
- B. Qi, X. Li, L. Sun, B. Chen, H. Chen, C. Wu, H. Zhang and X. Zhou, *Nanoscale*, 2018, 10, 19846-19853.