Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Accurately controlling the hierarchical nanostructure of polyamide

membrane via electrostatic atomization-assisted interfacial

polymerization

Jingjing Chen^{a,1}, Jie Zhang^{a,1}, Xiaoli Wu^a, Xulin Cui^a, Wenpeng Li^{a,*}, Haoqin Zhang^a, Jingtao Wang^{a,b,*} Xingzhong Cao^c, Peng Zhang^c

^aSchool of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

^bHenan Institutes of Advanced Technology, Zhengzhou University, 97 Wenhua Road, Zhengzhou

450003, P. R. China

^cMulti-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China

*To whom correspondence should be addressed: E-mail: lwp0103@163.com (W.P. Li);

jingtaowang@zzu.edu.cn (J.T. Wang).

¹These authors contributed equally to this work.

Fig. S1. SEM images of nylon and PAN substrates and the corresponding pore size distribution.

Fig. S2. The home-made device for the nanofiltration performance evaluation of membranes.

Fig. S3. SEM images of $TMC_{0.001}$ membrane with different monomer amounts.

Fig. S4. (a) AFM image of $TMC_{0.001}$ membrane on nylon substrate, (b) AFM height image and (c) corresponding height profiles of $TMC_{0.001}$ membrane with same monomer amounts on silicon wafer.

Fig. S5. AFM image of nylon substrate.

Fig. S6. (a) AFM image of $TMC_{0.001}/TMC_{0.1}$ membrane on nylon substrate, (b) AFM height image and (c) corresponding height profiles of $TMC_{0.1}$ membrane with same monomer amounts as the dense layer in $TMC_{0.001}/TMC_{0.1}$ on silicon wafer.

Fig. S7. SEM image of $TMC_{0.1}$ membrane with same monomer amounts as the dense layer in $TMC_{0.001}/TMC_{0.1}$ directly prepared on nylon substrate.

Fig. S8. (a) SEM image, (b) O elemental mapping, and (c) AFM image of defect-free $TMC_{0.1}$ membrane. (d) AFM height image of $TMC_{0.1}$ membrane with the same monomer amount but on silicon wafer (Inset is the corresponding height profiles).

Fig. S9. FTIR spectra of $TMC_{0.001}$, $TMC_{0.001}/TMC_{0.1}$, and $TMC_{0.1}$ membranes.

Fig. S10. High resolution C 1s spectra of $TMC_{0.001}$, $TMC_{0.001}/TMC_{0.1}$, and $TMC_{0.1}$ membranes.

Fig. S11. AFM images of $TMC_{0.1}$ membranes at (a) 0.4 ml, (b) 0.8 ml, (c) 1.2 ml, and (d) 1.6 ml monomer solutions (Insets are corresponding height profiles).

Fig. S12. Cross-sectional SEM images of $TMC_{0.1}$ membrane sprayed for (a) 5 h and (b) 10 h.

Fig. S13. Thickness of conventional IP membranes as a functional of monomer amounts.

Fig. S14. The comparison of schematic diagram between (a) electrostatic atomization-assisted and (b) conventional interfacial polymerization¹.

Fig. S15. XPS spectra of the $TMC_{0.1}$ and $TMC_{0.001}$ membranes whose aqueous phase monomer is *p*-phenylenediamine (PPD).

Fig. S16. Zeta potential of $TMC_{0.001}$, $TMC_{0.001}/TMC_{0.1}$, and $TMC_{0.1}$ membranes at different pH.

Fig. S17. (a) Contact angles of $TMC_{0.1}$ and $TMC_{0.001}/TMC_{0.1}$ membranes as well as (b) the corresponding photos.

Fig. S18. (a) N_2 adsorption/desorption isotherms, (b) calculated surface area and density, and (c) pore diameter distribution of $TMC_{0.001}$, $TMC_{0.001}/TMC_{0.1}$, and $TMC_{0.1}$ membranes.

Fig. 19. The reaction diagram of PEI and TMC as well as the formed nanopore.

Fig. S20. UV-vis spectra of dyes with different sizes in methanol solution before and after filtration through (A) $TMC_{0.001}$, (B) $TMC_{0.001}/TMC_{0.1}$, and (C) $TMC_{0.1}$ membranes.

Fig. S21. UV-vis absorption spectra of dye solutions before and after membrane immersion for 3 hours.

Fig. S22. Dyes rejection and methanol permeance of (a) $TMC_{0.001}$, (b) $TMC_{0.001}/TMC_{0.1}$, and (c) $TMC_{0.1}$ membranes.

Fig. S23. Acetone and water fluxes of (a) $TMC_{0.001}$ and (b) $TMC_{0.1}$ membranes as well as (c) nylon substrate as a function of operation pressure.

Fig. S24. Long-term water stability of $TMC_{0.001}/TMC_{0.1}$ membrane (pH=4.0).

Fig. S25. Rejection of $TMC_{0.001}/TMC_{0.1}$ membrane before and after HCl treatment for one month.

Fig. S26. (a) Solvent uptake and (b) thickness swelling of $TMC_{0.001}$, $TMC_{0.001}/TMC_{0.1}$, and $TMC_{0.1}$ membranes.

Membrane	Aqueous Organic		Eleme	Cross-linking		
	phase (w/v)	phase (w/v)	С	0	Ν	degree (%)
TMC _{0.1}	0.1%	0.1%	74.63	12.93	12.44	94.1
TMC _{0.001}	0.1%	0.001%	72.14	15.21	11.32	56.4

Table S1. Elemental composition of $TMC_{0.1}$ and $TMC_{0.001}$ membranes formed from PPD was detected by XPS.

Dye molecular	Size	Charge	Methanol permeance	Rejection
	(nm)	8-	$(L m^{-2} h^{-1} bar^{-1})$	(%)
МО	1.0	_	38.4	87.3
MB	1.2	+	38.1	89.4
CV	1.5	+	38.7	94.9
RR	1.5	_	39.2	95.3
BB	1.6	_	39.4	97.1
AY14	1.9	—	38.2	99.2

Table S2. Dyes properties and nanofiltration performance of $TMC_{0.001}/TMC_{0.1}$ membrane.

Membrane	Thickness	Solute	Rejection (%)	Water	Reference
wiembrane	of skin layer	bolute		permeance	Reference
	(nm)			$(L m^{-2} h^{-1} bar^{-1})$	
TFCn	54.9	Methyl orange	90	19.6	2
MDC-IP	25	Acid fuchsin	98.5	13.8	3
PIP-TMC	43.6	Reactive orange	95	7.11	4
TPT-TMC	35.1	Reactive orange	97	8.68	4
TA/DETA	57	Chrysoidine G	98	7.9	5
PIP-GO	20	Rhodamine B	87	24.2	6
NFM-4	98	Safranine T	95	9.82	7
SRNF	93	Congo red	99.9	2.7	8
NFM-6	77	Methyl orange	95	17.6	9
PAN450	35	Methyl blue	96	5.8	10
SPIF-PA	17.1	Acid fuchsin	99	0.86	11
IP@FI	6.5	Neutral red	96	2.7	12
E-spray	30	Methyl orange	91	2	13
$TMC_{0.001}/TMC_{0.1}$	49.6	Acid yellow 14	99.2	23.7	This work

Table S3. Comparison of nanofiltration performance for various membranes.

Supplementary References

- L. Shan, J. Gu, H. Fan, S. Ji and G. Zhang, ACS Appl. Mater. Interfaces, 2017, 9, 44820–44827.
- Y. Li, Y. Su, Y. Dong, X. Zhao, Z. Jiang, R. Zhang and J. Zhao, *Desalination*, 2014, 333, 59–65.
- L Shan, J. Gu, H. Fan, S. Ji and G. Zhang, ACS Appl. Mater. Interfaces, 2017, 9, 44820– 44827.
- 4. Y. Zeng, L. Wang, L. Zhang and J. Q. Yu, J. Membr. Sci., 2018, 546, 225-233.
- X. Zhang, Y. Lv, H. Yang, Y. Du and Z. Xu, ACS Appl. Mater. Interfaces, 2016, 8, 32512– 32519.
- R. Hu, Y. He, C. Zhang, R. Zhang, J. Li and H. Zhu, J. Mater. Chem. A, 2017, 5, 25632– 25640.
- 7. Q. An, W. Sun, Q. Zhao, Y. Ji and C. Gao, J. Membr. Sci., 2013, 431, 171–179.
- S. Hermans, E. Dom, H. Mariën, G. Koeckelberghs and I. F. J. Vankelecom, *J. Membr. Sci.*, 2015, **476**, 356–363.
- 9. Y. Mi, F. Zhao, Y. Guo, X. Weng, C. C. Ye and Q. An, J. Membr. Sci., 2017, 541, 29-38.
- M. R. Chowdhury, J. Steffes, B. D. Huey and J. R. McCutcheon, *Science*, 2018, 361, 682–686.
- 11. M. F. J. Solomon, Y. Bhole and A. G. Livingston, J. Membr. Sci., 2012, 423, 371-382.
- 12. Z. Jiang, S. Karan and A. G. Livingston, Adv. Mater., 2018, 30, 1705973.
- X. Ma, Z. Yang, Z. Yao, H. Guo, Z. Xu and C. Y. Tang, *Environ. Sci. Technol. Lett.*, 2018, 5, 117–122.