Supporting Information

PCE11-Based Polymer Solar Cells with High Efficiency over 13% Achieved by Room-Temperature Processing

Jianyun Zhang, Wenrui Liu, Ming Zhang, Shengjie Xu*, Feng Liu, and Xiaozhang Zhu*

Synthetic Procedures

The synthetic route for compound ZITI-N-R is similar with the synthesis of ZITI-N,⁵⁰ the alkylation reaction with methyl, octyl and ethylhexyl, respectively.

Scheme S1. Synthesis of ZITI-N-R NFAs. Reagents and conditions: a, (i) 2,3-Dibromothiophene, $Pd(PPh_3)_4$, THF; (ii) *n*-BuLi, Tos-N₃, THF. b, (i) *o*-dichlorobenzene, 160 °C; (ii) NaH, CH₃I, DMF. c, POCl₃, DMF. d, INCN-2F, pyridine, CHCl₃.

Compound ZITI-N-C₈H₁₇.¹H NMR (300 MHz, CDCl₃): δ 8.99 (s, 2H), 8.54 (m, 2H), 7.87 (s, 2H), 7.82 (s, 2H), 7.69 (t, ³J = 7.5 Hz, 2H), 7.26 (s, 2H), 4.29 (m, 4H), 2.17 (m, 8H), 1.94(m, 4H), 1.30-0.50 (m, 118H); HRMS (MALDI-TOF) calcd for C₁₀₀H₁₁₈F₄N₆O₂S₂ [M]⁺: 1771.0879, found, 1771.0874.

Compound ZITI-N-EH. ¹H NMR (400 MHz, CDCl₃): δ 8.97 (s, 2H), 8.54 (m, 2H), 7.89 (s, 2H), 7.82 (s, 2H), 7.69 (t, ³J = 7.6 Hz, 2H), 7.30 (s, 2H), 4.18 (m, 4H), 2.13 (m, 10H), 1.20-0.50 (m, 120H); HRMS (MALDI-TOF) calcd for C₁₀₀H₁₁₈F₄N₆O₂S₂ [M]⁺: 1771.0879, found, 1771.0871.

ZITI-N-CH₃:

2,2'-[[6,6,13,13-tetrakis(2-butyloctyl)-4,11-dimethyl-4,6,11,13-tetrahydropentaleno[2,1-f:5,4-f']dithieno[3,2-b:3',2'-b']diindole-2,9-diyl]bis[methylidyne(5,6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene)]]bis[malononitrile]

ZITI-N-C₈H₁₇:

2,2'-[[6,6,13,13-tetrakis(2-butyloctyl)-4,11-dioctyl-4,6,11,13-tetrahydropentaleno[2,1-*f*:5,4-*f*']dithieno[3,2-*b*:3',2'-*b*']diindole-2,9-diyl]bis[methylidyne(5,6-difluoro-3-*oxo*-1*H*-indene-2,1(3*H*)-diylidene)]]bis[malononitrile]

ZITI-N-EH:

2,2'-[[6,6,13,13-tetrakis(2-butyloctyl)-4,11-2-ethylhexyl-4,6,11,13-tetrahydropentaleno [2,1-f:5,4-f']dithieno[3,2-b:3',2'-b']diindole-2,9-diyl]bis[methylidyne(5,6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene)]]bis[malononitrile]

The preparation of ZnO sol-gel is based on the reference (*Adv. Mater.*, 2013, **25**, 2397–2402). The detail process is shown below:

Zinc acetate dihydrate $[Zn(CH_3COO)\bullet 2H_2O]$ (Aldrich, 99.9%) with 0.1 M concentration was first dissolved in anhydrous ethanol $[CH_3CH_2OH]$ (99.5+% Aldrich) and rigorously stirred for 2–3 h at 80 °C. Subsequently, ethanolamine was added to the solution as sol stabilizer followed by thorough mixing process with magnetic stirrer for 12-15 h at 60 °C.

The measurement of film thickness. The step profiler was used to measure the film thickness by scanning profilometry. A thin probe was used to scan the surface of the sample. When a height difference was detected, the changes was converted into voltage signal in the internal circuit and then the film thickness was calculated.

Fig. S1 (a) Thermal gravimetric analysis (TGA) curve of ZITI-N-CH₃, ZITI-N-C₈H₁₇ and ZITI-N-EH; (b) UV-vis-NIR absorption spectra of ZITI-N-CH₃, ZITI-N-C₈H₁₇ and ZITI-N-EH in chloroform; (c) Cyclic voltammogram of PffBT4T-2OD, ZITI-N-CH₃, ZITI-N-C₈H₁₇ and ZITI-N-EH films in 0.1 mol/L CH₃CN solution of tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte with a scan rate of 100 mV s⁻¹.

Fig. S2 Contact angles of formamide (FM) and water droplets on PffBT4T-2OD, PC₇₁BM, ZITI-N-CH₃, ZITI-N-C₈H₁₇, and ZITI-N-EH neat films.

Fig. S3 *J*^{0.5} *vs V* characteristics for PffBT4T-2OD:ZITI-N-CH₃-, PffBT4T-2OD:ZITI-N-C₈H₁₇- and PffBT4T-2OD:ZITI-N-EH-based PSCs; hole-only diode (a) and electron-only diode (b).

Fig. S4 AFM height images (up) and TEM (down) images of the PffBT4T-2OD:ZITI-N-CH₃, PffBT4T-2OD:ZITI-N-C₈H₁₇ and PffBT4T-2OD:ZITI-N-EH blend films.

Fig. S5. Differential scanning calorimetry (DSC) curves of ZITI-N-CH₃, ZITI-N-C₈H₁₇, and ZITI-N-EH with a heating rate of 10 $^{\circ}$ C min⁻¹ under inert atmosphere.

Fig. S6. The evolution of the photovoltaic performance over storage time of the optimized device based on the PffBT4T-2OD:ZITI-N-R (R=CH₃, C_8H_{17} , EH) with encapsulation in glove box.

Table S1. The contact angles and surface energy parameters of the materials.

Organic layer	Contact angle water [deg]	Contact angle FM ^(a) [deg]	$\gamma_d^{(b)}$ [mN m ⁻¹]	$\gamma_{p}^{(b)}$ [mN m ⁻¹]	γ [mN m ⁻¹]	$(\sqrt{\gamma_{donor}} - \sqrt{\gamma_{accept}})$
PffBT4T-2OD	112.1	94.5	16.19	2.21	18.40	
PC ₇₁ BM	81.1	56.5	25.77	10.64	36.41	3.04
ZITI-N-CH ₃	104.3	79.3	25.13	2.12	27.25	0.87
ZITI-N-C ₈ H ₁₇	102.1	78.8	23.27	3.34	26.61	0.76
ZITI-N-EH	100.6	77.5	22.21	4.17	26.38	0.72

(a) FM is formamide; (b) γ_{d} and γ_{p} represent the surface free energies generated from the dispersion forces and the polar forces, respectively; (c)Estimates for all Flory-Huggins interaction parameter $(\chi_{donor,acceptor})$ can in principle be derived using the relation of $\chi_{donor,acceptor} = K(\sqrt{\gamma_{donor}} - \sqrt{\gamma_{acceptor}})^{2}$ (K is a constant)^[51]

Table S2. Photovoltaic performance of PffBT4T-2OD:ZITI-N-R-based solar cells with different D/A ratio. Average values with standard deviation were obtained from 6 devices.

	D:A	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
PffBT4T- 2OD:ZITI-N-CH ₃	1:0.8	0.827	17.51	59.48	8.61 (8.39±0.24)
	1:1	0.824	18.97	56.02	8.78 (8.52±0.22)

	1:1.2	0.825	19.12	52.34	8.26 (8.10±0.20)
	1:0.8	0.801	20.76	71.19	11.83 (11.66±0.19)
PffBT4T- 2OD:ZITI-N-C₀H₁7	1:1	0.802	21.04	71.85	12.13 (11.92±0.14)
	1:1.2	0.790	20.32	68.55	11.01 (10.78±0.14)
	1:0.8	0.813	20.83	73.22	12.42 (12.18±0.18)
PffBT4T- 20d·ziti_n_fh	1:1	0.805	22.13	73.35	13.07 (12.80±0.15)
	1:1.2	0.801	21.67	67.63	11.70 (11.44±0.21)

Table S3. Photovoltaic performance of PffBT4T-2OD:ZITI-N-R-based solar cells different thermal annealing temperature. Average values with standard deviation were obtained from 6 devices.

	Treatment	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
	as-cast	0.837	17.60	50.93	7.51 (7.36±0.16)
PffBT4T-	80°C/10 min	0.826	18.74	52.87	8.18 (7.94±0.28)
20D:ZIII-N-CH ₃	100°C/10 min	0.824	18.97	56.02	8.78 (8.52±0.22)
	120°C/10 min	0.818	19.29	52.03	8.22 (8.01±0.27)
	as-cast	0.813	20.38	66.78	11.05 (10.79±0.15)
DffDT4T	80°C/10 min	0.812	20.76	71.19	11.98 (11.80±0.12)
20D:ZITI-N-C ₈ H ₁₇	100°C/10 min	0.802	21.04	71.85	12.13 (11.92±0.14)
	120°C/10 min	0.801	20.39	72.81	11.89 (11.73±0.19)
	as-cast	0.817	20.77	70.32	11.94 (11.76±0.15)
PffBT4T-	60°C/10 min	0.812	21.28	69.80	12.56 (12.48±0.19)
2OD:ZITI-N-EH	80°C/10 min	0.805	22.13	73.35	13.07 (12.80±0.15)
	100°C/10 min	0.795	21.69	69.50	12.01 (11.77±0.26)

Table S4. Photovoltaic performance of PffBT4T-2OD:ZITI-N-R-based solar cells with different thicknesses. Average values with standard deviation were obtained from 6 devices.

	rpm	Thickness (nm)	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
	3500r	110 nm	0.824	18.78	55.04	8.52 (8.27±0.19)
PffBT4T-	3000r	130 nm	0.824	18.97	56.02	8.78 (8.52±0.22)
20D:ZIII-N-CH ₃	2500r	170 nm	0.820	19.53	47.71	7.64 (7.41±0.13)
	2000r	200 nm	0.819	19.35	45.21	7.16 (7.05±0.18)
	3500r	110 nm	0.801	20.39	72.81	11.89 (11.76±0.16)
PffBT4T-	3000r	130 nm	0.802	21.04	71.85	12.13 (11.92±0.14)
2OD:ZITI-N-C ₈ H ₁₇	2500r	170 nm	0.798	21.01	68.82	11.51 (11.34±0.14)
	2000r	200 nm	0.797	20.98	66.12	11.04 (10.74±0.24)
	3500r	110 nm	0.806	21.74	71.93	12.62 (12.47±0.24)
PffBT4T-	3000r	130 nm	0.805	22.13	73.35	13.07 (12.80±0.15)
2OD:ZITI-N-EH	2500r	170 nm	0.804	22.12	70.30	12.57 (12.43±0.10)
	2000r	200 nm	0.804	22.45	67.79	12.35 (12.14±0.13)

Activo lavor	Processing temperature	Thickness	Voc	J _{sc}	FF	PCE	Ref
Active layer	(°C)	(nm)	(V)	(mA/cm^2)	(%)	(%)	Kel.
PNTDT-2F2T:PC71BM	40	210	0.73	18.80	70.0	9.63	1
NT812:PC ₇₁ BM	70	300	0.72	20.61	66.99	10.2	2
PffBTT ₂ -DPPT ₂ PC ₇₁ BM	100	100	0.81	17.26	60	8.44	3
PTBTz-2:PC71BM	100	100	0.83	16.84	69.5	9.72	4
PffBT4T-2OD:PC71BM	110	240	0.76	17.8	61	8.3	5
PffBT4T-2OD:PC71BM	100	300	0.79	18.5	71	10.3	5
PffBT4T-2OD:PC71BM	80	350	0.76	17.3	60	7.9	5
PffBX4T-2DT:PC71BM	110	250	0.875	15.8	66	9.4	6
PffBX4T-2DT:PC71BM	110	110	0.878	13.6	72	8.9	6
PffBX4T-2DT:PC71BM	110	300	0.867	15.9	62	8.7	6
PffBT-T3(1,2)-2:PC71BM	110	250	0.82	18.7	68.3	10.5	7
P3:PC ₇₁ BM	110	210	0.66	20.69	71	9.76	8
P2:PC71BM	110	136	0.69	16.3	69	7.76	9
PffBT4T-2OD:PC71BM	110	300	0.77	18.4	74	10.5	10
PBDTTT-H:PC71BM	110	95	0.8	17.37	67.5	9.38	11
PNTz4TF2:PC71BM	160	230	0.82	19.3	0.67	10.5	11
PffT2-FTAZ:PC71BM	115	250	0.8	13.3	69	7.5	12
FBT-Th4(1,4):PC ₇₁ BM	60	230	0.76	16.2	62.1	7.64	13
PffBT-2TPF4-19/1:PC61BM	30	169	0.754	17.05	69.3	8.9	14
PffBT-2TPF4-9/1:PC ₆₁ BM	30	168	0.769	17.18	70.8	9.4	14
PffBT-2TPF4-4/1:PC ₆₁ BM	30	148	0.772	16.55	72.7	9.3	14
PffBT4T90-co- 3T10:PC ₇₁ BM	25	400	0.73	19.9	65.0	9.6	15
PffBT4T-2OD:BTR:PC71BM	25	300	0.77	18.28	74.02	10.59	16
PNTT:BTR:PC71BM	25	300	0.77	20.83	70.43	11.44	16
PffBX-TT:PC71BM	130	250	0.85	15.3	66.2	9.10	17
PffBX-DTT:PC71BM	25	260	0.82	12.8	62.2	6.66	17
PFBT4T-C5Si-25%:PC71BM	90	420	0.76	19.08	74.12	11.09	18
PTFB-O:ITIC-Th	110	96	0.92	16.70	67.6	10.9	19
PffBT4T-2DT:EH-IDTBR	60	80	1.02	17.2	0.63	11.1	20
PffBT4T-2OD:BAF-4CN	70	290	0.769	15.52	70.7	8.4	21
PffT2-FTAZ-2DT:IEIC	80	80	0.998	12.2	59	7.2	22
P3TEA:SF-PDI ₂	90	120	1.11	13.27	64.3	9.5	23
PTP8:P(NDI2HD-Se)	135	133	0.99	9.7	62.6	6.01	24
PffBT4T-2OD:EH-IDTBR	110	300	1.03	16.1	54.5	9.1	25
PffBT4T-2OD:ZITI-N-EH	25	130	0.805	22.13	73.35	13.07	This work

 Table S5. The photovoltaic parameters of TDA polymer-based PSCs.

References

- 1. W. S. Yoon, D. W. Kim, M.-W. Choi, J.-M. Park, S. Y. Park, *Adv. Energy Mater.*, 2018, **8**, 1701467.
- Y. Jin, Z. Chen, S. Dong, N. Zheng, L. Ying, X. F. Jiang, F. Liu, F. Huang, Y. Cao, Adv. Mater., 2016, 28, 9811.
- 3. T. Ma, K. Jiang, S. Chen, H. Hu, H. Lin, Z. Li, J. Zhao, Y. Liu, Y.-M. Chang, C.-C. Hsiao, H. Yan, *Adv. Energy Mater.*, 2015, **5**, 1501282.
- 4. D. Zhu, X. Bao, Q. Zhu, C. Gu, M. Qiu, S. Wen, J. Wang, B. Shahid, R. Yang, *Energy Environ. Sci.*, 2017, **10**, 614.
- 5. W. Ma, G. Yang, K. Jiang, J. H. Carpenter, Y. Wu, X. Meng, T. McAfee, J. Zhao, C. Zhu, C. Wang, H. Ade, H. Yan, *Adv. Energy Mater.*, 2015, **5**, 1501400.
- 6. J. Zhao, Y. Li, A. Hunt, J. Zhang, H. Yao, Z. Li, J. Zhang, F. Huang, H. Ade, H. Yan, *Adv. Mater.*, 2016, **28**, 1868.
- 7. H. Hu, K. Jiang, G. Yang, J. Liu, Z. Li, H. Lin, Y. Liu, J. Zhao, J. Zhang, F. Huang, Y. Qu, W. Ma, H. Yan, J. Am. Chem. Soc., 2015, **137**, 14149.
- S. Shi, Q. Liao, Y. Tang, H. Guo, X. Zhou, Y. Wang, T. Yang, Y. Liang, X. Cheng, F. Liu, X. Guo, *Adv. Mater.*, 2016, 28, 9969.
- 9. Z. Zhang, Z. Lu, J. Zhang, Y. Liu, S. Feng, L. Wu, R. Hou, X. Xu, Z. Bo, *Org. Electronics.*, 2017, **40**, 36.
- 10. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, *Nat. Commun.*, 2014, **5**, 5293.
- 11. K. Kawashima, T. Fukuhara, Y. Suda, Y. Suzuki, T. Koganezawa, H. Yoshida, H. Ohkita, I. Osaka, K. Takimiya, *J. Am. Chem. Soc.*, 2016, **138**, 10265.
- 12. Z. Li, H. Lin, K. Jiang, J. Carpenter, Y. Li, Y. Liu, H. Hu, J. Zhao, W. Ma, H. Ade, H. Yan, *Nano Energy*, 2015, **15**, 607.
- 13. Z. Chen, P. Cai, J. Chen, X. Liu, L. Zhang, L. Lan, J. Peng, Y. Ma, Y. Cao, *Adv. Mater.*, 2014, **26**, 2586.
- 14. X. Liao, L. Zhang, L. Chen, X. Hu, Q. Ai, W. Ma, Y. Chen, Nano Energy, 2017, 37, 32.
- 15. B. Xu, I. Pelse, S. Agarkar, S. Ito, J. Zhang, X. Yi, Y. Chujo, S. Marder, F. So, J. R. Reynolds, *ACS Appl. Mater. Interfaces*, 2018, **10**, 44583.
- M. Xiao, K. Zhang, Y. Jin, Q. Yin, W. Zhong, F. Huang, Y. Cao, *Nano Energy*, 2018, 48, 53.
- P. Chen, S. Shi, H. Wang, F. Qiu, Y. Wang, Y. Tang, J. R. Feng, H. Guo, X. Cheng, X. Guo, ACS Appl. Mater. Interfaces, 2018, 10, 21481.
- X. Liu, L. Nian, K. Gao, L. Zhang, L. Qing, Z. Wang, L. Ying, Z. Xie, Y. Ma, Y. Cao, F. Liu, J. Chen, J. Mater. Chem. A., 2017, 5, 17619.
- 19. H. Hu, K. Jiang, P. C. Y. Chow, L. Ye, G. Zhang, Z. Li, J. H. Carpenter, H. Ade, H. Yan, *Adv. Energy Mater.*, 2018, **8**, 1701674.

- A. Wadsworth, R. S. Ashraf, M. Abdelsamie, S. Pont, M. Little, M. Moser, Z. Hamid, M. Neophytou, W. Zhang, A. Amassian, J. R. Durrant, D. Baran, I. McCulloch, ACS Energy Letters., 2017, 2, 1494.
- 21. Suman, V. Gupta, A. Bagui, S. P. Singh, Adv. Funct. Mater., 2017, 27, 1603820.
- 22. H. Lin, S. Chen, Z. Li, J. Lai, G. Yang, T. McAfee, K. Jiang, Y. Li, Y. Liu, H. Hu, J. Zhao, W. Ma, H. Ade, H. Yan, *Adv. Mater.*, 2015, **27**, 7299.
- 23. J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganas, K. Gundogdu, F. Gao, H. Yan, *Nat. Energy*, 2016, 1, 16089.
- 24. S. Shi, J. Yuan, G. Ding, M. Ford, K. Lu, G. Shi, J. Sun, X. Ling, Y. Li, W. Ma, *Adv. Funct. Mater.*, 2016, **26**, 5669.
- 25. G. Zhang, R. Xia, Z. Chen, J. Xiao, X. Zhao, S. Liu, H. Yip, Y. Cao, *Adv. Energy Mater.*, 2018, **8**, 1801609.

High Resolution MALDI-TOF Mass Spectrum of Compound ZITI-N-C₈H₁₇

MALDI, ZJY-2

High Resolution MALDI-TOF Mass Spectrum of Compound ZITI-N-EH

Z171-N(84)-47-

MALDI,3

Meas. m/z # Ion Formula 1771.087116 1 C114H146F4N6O2S2 Mean err [ppm] m/z err [ppm] Score 1771.087116 100.00 1771.087934 -0.5 -0.4 42.7 43.0 odd

ok