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Synthesis of compound PEG12-PTZ. A sample of NaH (2.0 g, 50 mmol, 5.0 eq) was added to 
the solution of phenothiazine (2.0 g, 10 mmol, 1.0 eq) in DMF (8.0 mL) and stirred at room 
temperature for 1 hour. Then, PEG12-OTs (5.9 g, 9.0 mmol, 0.9 eq) was added to the reaction 
mixture and continued stirring at room temperature for 24 hours. Water was carefully added 
dropwise to the residue to quench the reaction. The crude reaction mixture was washed three 
times with brine and extracted with ethyl acetate to remove DMF. The organic extract was 
combined and dried over Na2SO4. The solution was filtered, and the filtrate was dried via 
rotavate. The crude residue was purified by column chromatography (SiO2; 10% MeOH in 
CH2Cl2) to afford the title compounds as a red oil. Yield: 4.9 g, 66%. 1H NMR (400 MHz, 
CDCl3), δ 3.37 (s, 3H), 3.39–3.76 (m, 44H), 3.78–3.89 (t, 2H, J = 8.0 Hz), 4.04–4.11 (t, 2H, J = 
8.0 Hz), 6.83–6.99 (m, 4H), 7.07–7.21 (m, 4H); 13C NMR (100 MHz, CDCl3), δ 47.45, 59.07, 
68.18, 71.86, 114.99, 122.60, 124.45, 127.35, 144.91; HR-MS obsd 764.3687, calcd 764.3650 
([M + Na]+, M = C37H59NO12S); Elemental analysis calcd for C37H59NO12S: C, 59.90; H, 8.02; 
N, 1.89. Found: C, 61.25; H, 7.62; N, 2.53. 

 

Scheme S1 Synthesis of compound PEG12-PTZ. 
 
Synthesis of compound C3-PTZ. A sample of KOH (2.2 g, 39 mmol, 1.5 eq) was added to the 
solution of penothiazine (5.2 g, 26 mmol, 1.0 eq) in DMSO (60 mL) and stirred for 1 h at 40 ºC. 
Then, 1-iodopropane (3.1 mL, 31 mmol, 1.2 eq) was added to the mixture and stirred for 12 h at 
80 ºC. The solution was washed three times with brine and extracted with ethyl acetate to remove 
DMSO. The organic extract was combined and dried over Na2SO4. The solution was filtered, and 
the filtrate was dried via rotavape. The crude residue was purified by column chromatography 
(SiO2; hexanes) to afford the title compounds as a white solid. Yield: 4.2 g, 68%. 1H NMR (400 
MHz, CDCl3), δ 0.988–1.08 (t, 3H, J = 8 Hz), 1.79–1.94 (m, 2H), 3.74–3.92 (m, 2H), 6.81–6.99 
(m, 4H), 7.09–7.24 (m, 4H); 13C NMR (100 MHz, CDCl3), δ 11.50, 20.22, 49.21, 115.59, 122.44, 
125.01, 127.29, 127.50, 145.41; HR-MS obsd 241.0918, calcd 241.0920 (M+, M = C15H15NS).  

 
Scheme S2 Synthesis of compound C3-PTZ. 
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Fig. S1 1H NMR (a and c) and 13C NMR (b and d) spectra of PEG12-PTZ and C3-PTZ in 
CDCl3.   
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Fig. S2 Photographs of compounds C3-PTZ (a) and PEG12-PTZ (b). 
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Fig. S3 CV scans of blank electrolyte, and 5 mM of Fc, Me-V, PEG12-V, C3-PTZ, and 
PEG12-PTZ in 0.1 M TBAPF6-ACN. Scan rate: 50 mV/s.  
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Fig. S4 CV scans of PEG12-PTZ (a) and C3-PTZ (c) at various concentrations in 0.1 M 
TBAPF6-ACN. The relationship between concentration and oxidized peak current of PEG12-
PTZ (b) and C3-PTZ (d).  
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Permeabilities of C3-PTZ or PEG12-PTZ were tested in a H-cell. The samples of 15 mL 0.1 M 
TBAPF6-ACN with 50 mM C3-PTZ or PEG12-PTZ were added to one side and 0.1 M 
TBAPF6-ACN without active materials was added in the other side. Both sides were 
continuously stirred on a magnetic stirrer. The CV scans of blank electrolyte over time were 
conducted to obtain the concentration of C3-PTZ and PEG12-PTZ. The permeability is 
calculated based on the following equation:S1 

, 
where Cr is the concentration measured at the blank electrolytes, C0 is the original active species 
concentration, V is the volume (15 mL), l is the membrane thickness (4.7 ´ 10-4 cm), A is the 
membrane area (0.64 cm2), and t is the test time.  
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Fig. S5 Permeability test of PEG12-PTZ and C3-PTZ. CV scans of PEG12-PTZ (a) and C3-
PTZ (b) in control cell over time. (c) Concentration of PEG12-PTZ and C3-PTZ in control cell. 
The date was calculated from Fig. S4.  
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Fig. S6 Repetitive CV scans of 5 mM of PEG12-PTZ (a) and C3-PTZ (b) in 0.1 M TBAPF6-
ACN for 500 cycles.  
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Fig. S7 CV scans of (a) (Me-V)2-, (b) (Me-V)1-, (c) (PEG12-V)2-, (d) (PEG12-V)1-, (e) (C3-
PTZ)1+, and (f) (PEG12-PTZ)1+. The samples were tested on day 0, and after 24 h (day 1), 48 h 
(day 2), 72 h (day 3), 96 h (day 4), and 120 h (day 5).  
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The electrochemical kinetics of PEG12-PTZ (Fig. S8a) and C3-PTZ (Fig. S8c) was also 
investigated by CV at different scan rates ranging from 5 to 2,000 mV/s. The redox peak currents 
increased with scan rate and were linearly related to the square root of the scan rate, meaning that 
the redox reaction is diffusion-controlled. The diffusion coefficient of PEG12-PTZ in TBAPF6-
ACN was calculated from the Randle-Sevcik equation:S2,3  

 
where ip is current maximum in amps, n is number of electrons transferred (n = 1), A is electrode 
area (0.071 cm2), F is Faraday Constant (96,485 C/mol), D is diffusion coefficient in cm2/s, C is 
concentration in mol/cm3 (C = 5 ´ 10-6 mol/cm3), ν is scan rate in V/s, R is gas constant (R = 
8.314 J/(K mol)) and T was temperature (298 K). 
The calculated diffusion coefficients of oxidation (DO) and reduction (DR) process of PEG12-
PTZ/PEG12-PTZ+ in TBAPF6-ACN were 10.96 ´ 10-6 cm2/s and DR = 9.88 ´ 10-6 cm2/s, 
respectively (Fig. S8b), slightly lower than them of C3-PTZ/C3-PTZ+ (DO = 16.79 ´ 10-6 cm2/s 
and DR = 16.93 ´ 10-6 cm2/s) (Fig. S8d). The reduced diffusion coefficients of PEG12-
PTZ/PEG12-PTZ+ were probably due to the increase in viscosity caused by PEG chains.  

 
 

 
Fig. S8 CV scans of 5 mM PEG12-PTZ (a) and C3-PTZ (c) at different scan rates. Peak 
oxidation and reduction current densities of PEG12-PTZ (b) and C3-PTZ (d) at different scan 
rates.  
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Diffusion coefficient (D) of PTZs can be calculated from Levich plot (limiting current vs 
w1/2):S4-6 iL = 0.62 nFAD2/3w1/2u-1/6C0, where iL is limit current density, n is number of transferred 
electrons (n = 1), F is Faraday’s constant (F = 96,485 C/mol), A is the surface area of the RDE (A 
= 0.196 cm2), w is the rotation speed (rad/s), u is kinematic viscosity of 0.1 M TBAPF6-ACN (u 
= 0.00442 cm2/s) and C0 is the concentration (C0 = 1 mM).  

 

 
Fig. S9 (a) Linear sweep voltammetry of 1 mM C3-PTZ in 0.1 M TBAPF6-ACN at different 
rotation speeds from 100 to 2,500 rpm. (b) Levich plot from the obtained limiting currents. (c) 
Koutecký-Levich plot (i-1 vs w-1/2) of 1 mM C3-PTZ. (d) Plot of log (ik) vs overpotential. 
 
 
 
 
Table S1 Diffusion coefficient (D) from Levich plot, diffusion coefficient (DO and DR) from 
Randle-Sevcik equation, reaction rate constant (k0) and transfer coefficient (a) of C3-PTZ and 
PEG12-PTZ in 0.1 M TBAPF6-ACN. 
 

Compound D (cm2/s) DO (cm2/s) DR (cm2/s) k0 (cm/s) a 

C3-PTZ 1.61 ´ 10-5 1.68 ´ 10-5 1.71 ´ 10-5 9.88 ´ 10-3 0.315 

PEG-PTZ 1.23 ´ 10-5 1.10 ´ 10-5 9.88 ´ 10-6 5.64 ´ 10-3 0.492 

 
  



S13 
 

 

  
Fig. S10 OCV of the PEG12-PTZ/PEG12-V battery at various SOCs. 
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Fig. S11 Charge-discharge plots of the PEG12-PTZ/PEG12-V battery at different cycle 
numbers. 
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Fig. S12 The performance characterization of (a-c) C3-PTZ/PEG-V, (d-f) PEG-PTZ/Me-V, 
and (g-i) C3-PTZ/Me-V batteries. Charge-discharge curves at different cycles (a, d and g), CV 
scans of electrolyte after cycling (b, e and h) and AC impedance spectra (c, f and i).  
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Fig. S13 1H NMR of catholyte and anolyte in PEG12-PTZ/PEG12-V battery before and after 
cycling. 
 

 
Fig. S14 1H NMR of catholyte and anolyte in C3-PTZ/PEG12-V battery before and after 
cycling. 



S17 
 

 
Fig. S15 1H NMR of catholyte and anolyte in PEG12-PTZ/Me-V battery before and after 
cycling. 
 

 
Fig. S16 1H NMR of catholyte and anolyte in C3-PTZ/Me-V battery before and after cycling. 
 

 



S18 
 

 
Fig. S17 CV scans of 5 mM PEG12-V in 0.1 M TBAPF6-ACN for 100 cycles.  
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Fig. S18 1H NMR spectra of PEG12-PTZ, (PEG12-PTZ)1+, PEG12-V, (PEG12-V)1–, and 
mixture of (PEG12-PTZ)1+ and (PEG12-V)1– in a molar rate of 1:1. 
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