Electronic Supplementary Information

Fe/Fe₃C nanoparticles decorated N-doped carbon nanofibers for improving nitrogen selectivity of electrocatalytic nitrate reduction

Yue Lan,^a Junliang Chen,^a Hui Zhang,^a Wei-xian Zhang^b and Jianping Yang*^a

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,

College of Materials Science and Engineering, Donghua University, Shanghai

201620, China

^b College of Environmental Science and Engineering, State Key Laboratory of
Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
E-mail for corresponding author: jianpingyang@dhu.edu.cn

Fig. S1 (a) SEM image, and (b) TEM image of Prussian blue.

Fig. S2 TGA curves of Fe/Fe₃C-NCNF-1 (iron content: 11%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-3 (iron

content: 41%, pyrolysis at 500 °C).

Fig. S3 (a-c) TEM images of Fe/Fe₃C-NCNF-1 (iron content: 11%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-3 (iron content: 41%, pyrolysis at 500 °C).

Fig. S4 (a, b) SEM images, (c) TEM image, and (d) HRTEM image of Fe/Fe₃C-NCNF-2-400 (iron content: 32%, pyrolysis at 400 °C).

Fig. S5 (a, b) SEM images, (c) TEM image, and (d) HRTEM image of Fe/Fe₃C-NCNF-2-600 (iron content: 32%, pyrolysis at 600 °C).

Fig. S6 Raman spectra of Fe/Fe₃C-NCNF-1 (iron content: 11%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-3 (iron content: 41%, pyrolysis at 500 °C).

Fig. S7 High resolution XPS spectra of (a) Fe 2p, (b) N 1s, and (c) C 1s of Fe/Fe₃C-NCNF-2-400 (iron content: 32%, pyrolysis at 400 °C).

Fig. S8 High resolution XPS spectra of (a) Fe 2p, (b) N 1s, and (c) C 1s of Fe/Fe₃C-NCNF-2-600 (iron content: 32%, pyrolysis at 600 °C).

Fig. S9 EDS spectrum of Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C).

Fig. S10 Conversion percentage of nitrate and nitrogen selectivity of Fe/Fe₃C-NCNF-1 (iron content: 11%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-3 (iron content: 41%, pyrolysis at 500 °C), Fe/Fe₃C-NCNF-2-400 (iron content: 32%, pyrolysis at 400 °C), Fe/Fe₃C-NCNF-2-600 (iron content: 32%, pyrolysis at 600 °C). Reaction conditions: initial NO₃⁻-N concentration 100 mg/L, 0.02 M NaCl at 24 h.

Fig. S11 Potentiodynamic polarization curves of Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C) at (a) different pH values and in (b) 0.04 M Na₂SO₄, 0.04 M NaCl electrolyte. Reaction conditions: initial NO₃⁻-N concentration 100 mg/L, 0.02 M NaCl for (a), initial NO₃⁻-N concentration 100 mg/L, 0.04 M Na₂SO₄, initial pH value 5 for (b).

Fig. S12 Effects of (a) initial Cl⁻ concentration and (b) the molarity ratio of Cl⁻ and SO₄²⁻ on nitrite selectivity and ammonia selectivity of Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C). Reaction conditions: initial NO₃⁻-N concentration 100 mg/L, initial pH value 5 at 24 h for (a), initial NO₃⁻-N concentration 100 mg/L, initial pH value 5 at 24 h for (b).

Fig. S13 The rate constants of electrocatalytic denitrification of Fe/Fe₃C-NCNF-2 (iron

content: 32%, pyrolysis at 500 °C) at different initial NO₃⁻-N concentrations. Reaction conditions: initial NO₃⁻-N concentration 100 mg/L, 0.03 M NaCl and 0.01 M Na₂SO₄ and initial pH value 5 at 24 h.

Fig. S14 nitrite selectivity and ammonia selectivity of Fe/Fe₃C-NCNF-2 over 7 cycles test of electrocatalytic denitrification. Reaction conditions: initial NO₃⁻-N concentration 100 mg/L, 0.03 M NaCl and 0.01 M Na₂SO₄, initial pH value 5 at 24 h.

Fig. S15 Effects of (a) initial pH value, (b) initial Cl⁻ concentration, (c) the molarity ratio of Cl⁻ and SO₄²⁻, (d) initial NO₃⁻-N concentration on conversion percentage of nitrate and nitrogen selectivity of Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C). Reaction conditions: initial NO₃⁻-N concentration 100 mg/L, 0.02 M NaCl at 24 h for (a), initial NO₃⁻-N concentration 100 mg/L, initial pH value 5 at 24 h for (b), initial NO₃⁻-N concentration 100 mg/L, initial NO₃⁻-N concentration 100 mg/L, initial pH value 5 at 24 h for (c), initial NO₃⁻-N concentration 100 mg/L, initial pH value 5 at 24 h for (c), initial NO₃⁻-N concentration 100 mg/L, for (c), initial NO₃⁻-N concentration 100 mg/L, initial pH value 5 at 24 h for (c), initial NO₃⁻-N concentration 100 mg/L, for (c), initial NO₃⁻-N concentration 100 mg/L, for (c), initial NO₃⁻-N concentration 100 mg/L, initial pH value 5 at 24 h for (c), initial NO₃⁻-N concentration 100 mg/L, for (c), initial pH value 5 at 24 h for (d).

Fig. S16 (a) Conversion percentage of nitrate and nitrogen selectivity of Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C) at different reaction time, (b) conversion percentage of nitrate and nitrogen selectivity over 7 cycles test of electrocatalytic denitrification. Reaction conditions: initial NO₃⁻-N concentration 100 mg/L, 0.03 M NaCl and 0.01 M Na₂SO₄, initial pH value 5 at 24 h.

Fig. S17 (a,b) SEM images of Fe/Fe₃C-NCNF-2 after 7 cycles test of electrocatalytic denitrification of Fe/Fe₃C-NCNF-2 (iron content: 32%, pyrolysis at 500 °C).

Catalysts	Calcination Temperature (°C)	Total N (%)	Pyridinic N (%)	Pyrrolic N (%)	Graphitic N (%)
Fe/Fe ₃ C-NCNF-2-400	400	13.57	7.71	5.59	2.27
Fe/Fe ₃ C-NCNF-2	500	11.27	6.78	2.89	1.60
Fe/Fe ₃ C-NCNF-2-600	600	5.00	2.17	1.63	1.20

 Table S1 The content of total nitrogen and different nitrogen species

Materials	Initial nH	Concentration of electrolyte	Catalysts dosage	N ₂ selectivity	Ref.
	P		(mg)	(%)	
nZVI@OMC	/	0.02 M NaCl	4	74	1
Pd ₄ Cu ₄ @N-pC	/	0.1 M Na2SO4	4	80	2
Fe@N-C	/	50 mM Na2SO4	60	~100	3
SnPd-NZSM	5.0-6.0	/	250	91	4
Cu/Pd@OMC	/	0.1 M Na2SO4	40	74	5
ZVT	7.2	Cl ⁻ : 12.0 mg/L	/	78.5	6
		SO4 ²⁻ : 28.0 mg/L			
		Ca ²⁺ : 29.4 mg/L			
		Mg ²⁺ : 5.3 mg/L			
nZVI/AC	7.0	/	200	5.5	7
Fe/Fe ₃ C-NCNF-2	5.0	0.03 M NaCl	4	~100	This
		0.01 M Na2SO4			work

Table S2 The comparison of electrocatalytic performance of different catalysts for nitrate removal.

References

1. W. Teng, N. Bai, Y. Liu, Y. Liu, J. Fan and W.-x. Zhang, *Environ. Sci. Technol.*, 2017, **52**, 230-236.

2. M. Chen, H. Wang, Y. Zhao, W. Luo, L. Li, Z. Bian, L. Wang, W. Jiang and J. Yang, *Nanoscale*, 2018, **10**, 19023-19030.

3. W. Duan, G. Li, Z. Lei, T. Zhu, Y. Xue, C. Wei and C. Feng, Water Res., 2019, 161,

126-135.

4. S. Hamid, M. A. Kumar and W. Lee, *Applied Catalysis B: Environmental*, 2016, **187**, 37-46.

5. J. Fan, H. Xu, M. Lv, J. Wang, W. Teng, X. Ran, X. Gou, X. Wang, Y. Sun and J. Yang, *New J. Chem.*, 2017, **41**, 2349-2357.

6. F. Yao, Q. Yang, Y. Zhong, X. Shu, F. Chen, J. Sun, Y. Ma, Z. Fu, D. Wang and X. Li, *Water Res*, 2019, **157**, 191-200.

7. A. M. E. Khalil, O. Eljamal, T. W. M. Amen, Y. Sugihara and N. Matsunaga, *Chem. Eng. J.*, 2016, **309**, 349–365.