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Figure S1. Schematic illustration of the synthesis process of Bi∈NS-C.
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Figure S2. (a) SEM image and (b) XRD pattern of Bi2S3 nanorods.

Figure S3. SEM elemental mapping image and EDX analysis of the Bi∈NS-C samples. 



Figure S4. TG curve of Bi∈NS-C. The calculated content of Bi in the composite 

structure was based on the following equation:

𝐵𝑖  (𝑤𝑡%) =
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐵𝑖

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐵𝑖2𝑂3
× 𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝐵𝑖2𝑂3

           

Figure S5. Raman spectrum of the carbon matrix.



Figure S6. N2 absorption-desorption isotherms of Bi∈NS-C. 

Figure S7. High-resolution XPS spectra of (c) N 1s and (d) S 2p and Bi 4f.



Figure S8. Electrochemical performances of the N, S-doped carbon matrix: (a) rate 
capability, (b) and galvanostatic charge/discharge curves at the current densities from 
0.2 to 6 A g-1 and (c) cycling stability at 1 A g-1. 

Figure S9. The electrochemical performances of Bi∈NS-C electrodes without adding 

conventional carbon additives (acetylene black): (a) rate performance and cycling 



stability and (b) galvanostatic charge/discharge curves at different scan rates. 

Figure S10. TEM images of the PPy-shelled Bi nanorods after annealing at 550 ℃. 

Figure S11. XRD pattern of the PPy-shelled Bi2S3 after annealing.



Figure S12. CV curves of (a) Bi powders and (b) Bi∈NS-C at different scan rates, plots 

of log (peak current) vs log (scan rates) of (c) Bi powders and (d) Bi∈NS-C, and 

calculated b values for (e) Bi powders and (f) Bi∈NS-C.



Figure S13. Comparison of the GITT profiles of (a) discharging and (b) charging 
processes. The K+ diffusion coefficients obtained in (c) discharging and (d) charging 
processes. 

The diffusion coefficient of K+ ions was measured by using galvanostatic intermittent 
titration technique (GITT), and the diffusion coefficient was calculated based on the 
following equation: 
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where A is the geometric area of electrode, MB, VM, and mB are molecular weight, 
molar volume, and mass of electrode material, respectively. ∆ES and ∆Eτ represent the 
changes of quasi-equilibrium potential and battery voltage, respectively.



  

Figure S14. Enlarged plots of Coulombic efficiencies of Bi powders, Bi@C, and 

Bi∈NS-C electrodes measured at 1 A g-1.

Figure S15. SEM images of the pristine (a) Bi powders; (b) Bi@C and (c) Bi∈NS-C 

electrodes.



Figure S16. (a) TEM image and (b) XRD pattern of the KMnHCFe.

 

Figure S17. Typical cyclic voltammogram curve of full KMnHCFe/Bi∈NS-C battery. 



Table S1. Comparision of cycling stabilities of KIBs anodes.

Samples Electrochemical stability Reference
Commercial Bi ～97% capacity retention after 100 cycles at 0.4 A g-1 31

Bi nanoparticle@C 91 mAh g-1 (74.8% capacity retention) after 700 cycles at 
1 A g-1

34

Bi nanoparticles 
embedded in 3D 
graphene 

164 mAh g-1 after 400 cycles at 1 A g-1 35

Porous Sb 318 mAh g-1 (62.35% capacity retention) after 50 cycles 
at 0.1 A g-1

28

Sb@C 247 mA h g-1 after 600 cycles at 0.2 A g-1 46

Sn4P3@carbon fiber 160.7 mAh g-1 (～53% capacity retention ) after 1000 
cycles at 0.5 A g-1 

25

Sulfur-grafted hollow 
carbon spheres

～150 mAh g-1 (93% capacity retention) after 1000 cycles 
at 3 A g-1

44

Hard–Soft composite 
carbon

200 mAh g-1 (93% capacity retention) at 0.279 A g-1 after 
200 cycles

8

Mesoporous carbon 146.5 mAh g-1 (70% capacity retention) after 1000 cycles 
at 1 A g-1

47

Hierarchical carbon 
nanotube

210 mAh g-1 (90% capacity retention) after 500 cycles at 
0.1 A g-1

48

VSe2@C ～150 mAh g-1 (87.3% capacity retention) after 500 
cycles at 2 A g-1 

11

Sb2S3/graphene 404 mAh g-1 after 200 cycles at 0.5 A g-1 49

MoSe2@C 226 mAh g-1 (83.5% capacity retention) after 1000 cycles 
at 1 A g-1

21

SnS2@rGO 205 mAh g-1 (73% capacity retention) after 300 cycles at 
1 A g-1

50

CoSe2@CNT 173 mAh g-1 (97% capacity retention) after 600 cycles at 
2 A g-1

51

Titania sheets ～75 mAh g-1 (70% capacity retention) after 1000 cycles 
at 1 A g-1 

15

CuO nanoplates 206 mAh g-1 after 100 cycles at 1A g-1 16

Ti6O11@CNT ～80 mAh g-1 (76% capacity retention) over 500 cycles at 
2 A g-1

52

FeP@C nanoboxes 205 mAh g-1 after 300 cycles at 0.1 A g-1 53

This work 320 mAh g-1 (90% capacity retention) after 100 cycles at 
0.2 A g-1

285 mAh g-1 (91% capacity retention) after 1000 cycles 
at 5 A g-1


