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Here, we illustrated the theoretical details about the thermoelectric transport properties of molecular 

junctions. This additional file includes:

 Supporting information about the details of theoretical method, skipping the difficult theoretical 

derivation, will be easily used for numerical calculations..

 Aligned band structure of graphene leads (armchair edge) and the molecular energy level of central 

molecules.

1. Conventional nonequilibrium Green’s function (NEGF) method
In the framework of NEGF method, the calculation of electron and phonon transport properties are 

unified.1 The first step is the calculation of phonon and electron Hamiltonian, which can be obtained by 

using many commercial or open-source software package, such as VASP, Atomistic tooltix (ATK), 

Quantum-Espresso (QE/PWscf), SIESTA, LAMMPS (for phonon only) and so on. After that, the 

Hamiltonian of phonon and electron can be written as the matrix form and partitioning by left (L), center 

(C), right (R):
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For convenience, we express the phonon and electron in an unified form by carriers energy  (  E E 

with the n = 2 for phonon,  with the n = 1 for electron). And the retarded (r) and advanced (a) E E
Green's function read as:
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where  > 0 is an infinitesimal parameter (10-5 in this work), and the retarded self-energy:
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The surface Green's functions  are given by:( )
r
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where  is identity matrix for phonon or overlap matrix for electron, and . ( )L RS 10(01) 01(10)
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Clearly, this surface self-energy and surface Green’s function can be solved recursively.2 It generally 
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obtained by decimation techniques. And then, the total transmission function with coupling matrices 

 can then be computed from the Caroli formula:†
( ) ( ) ( )[ ]L R L R L Ri   
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2. Thermoelectric parameters calculation
Once the transmission function is obtained, the Seebeck coefficient (S), conductance () and electrical 

thermal conductance (e) can be obtained by:3
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where h is Plank constant, T is temperature, e is elementary charge, and  is Lorentz function, which nL

expressed as:
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where  is Fermi-Dirac distribution function. Since the phonon thermal conductance is uncorrelated to Ef

chemical potential , it is a constant value at a specific temperature. Finally, the ZT value is determined by 

the well-known relations:
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3. Individual phonon mode transmission probability
The transmission probability of individual phonon modes that originated from graphene leads are 

given by the transmission matrix:4, 5
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where , and the  is the lattice constant of left (right) leads along the transport 00 00r
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direction, m and n is the vibration degree of freedom of the left and right leads respectively. The 

eigenvector matrices  are obtained from diagonalizing the Bloch matrices:( )
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and the velocities matrices are given by:
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where . In addition, this method can also apply to calculate electronic  †00 00 00
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transport. The transmission probability that contribute from different phonon mode of left or leads is read 

as:
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Equivalent to Caroli’s formula, the total phonon transmission of left and right leads is given by:
† †( ) ( ) ( ) ( )RLT T Tr tt Tr t t   

4. Phonon transmission eigenchannel decomposition

To better understand the phonon interference effect, it is necessary to clarify the phase change of 

propagating lattice wave. For this purpose, we adopt the phonon transmission eigenchannel decomposition 

method as described in manuscript.6 For simplicity, we skip the theoretical derivation and go straight to 

the key steps of numerical calculation. It starts with the spectral function AC, which is given by terms of 

the Green's functions as follows:
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Where  is contributed from left/right leads, and  is contributed from the bound state of central Z
CA B

CA

molecular. Then, the spectral function of specific leads (L or R) can be decomposed for:
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Diagonalizing the spectral function matrix we can obtain the eigenvalues m and the scattering state 

. Then the transmission probability matrix is given by:( )m %
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where U() = [1, 2,…,m]. Diagonalizing this transmission probability matrix, we will obtain the 

transmission eigenvector cm and transmission eigenvalue . In this way, the total phonon transmission 

spectra are decomposed into the contribution of different phonon transmission eigenchannels in the central 

region of device. And the eigenchannel  in central region is given by:
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Finally, the complex displacements of eigenchannels are given by:
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where s() is a frequency dependent scaling factor of complex displacement vector, mi is mass of i-th 

atom. Here, the  is the phase angle of transmission eigenchannel. This information is included in , ( )i E 

the imaginary part of the complex displacement of eigenchannels .

5. Band structure and molecular energy spectrum

To illustrate the electronic properties are less affect by the twist angle, we calculated the band structure of 

graphene leads and molecular energy spectrum of central molecules, as shown in left panel of Figure. S1. 

The band structure of graphene leads clearly show semiconducting property (with around 0.2 eV band 

gap). The central molecular energy spectrum as a function of twist angles are calculated, as shown in the 

right panel of Figure. S1. For convenience, we aligned the molecular energy levels and band structure of 

graphene (Fermi level as the reference). One can see that molecular energy levels near Fermi level are 

located within the band gap of graphene. This illustrated the zero electronic transmission of the 

intermediate coupling molecular junction near the Fermi level. In addition, the isolated discrete energy 

level leads to localization of electronic state and thus results in the slope of transmission function changes 

in every discrete energy levels. Therefore, the Seebeck coefficient will undergo the unsystematic changes 

on the upper and lower sides of every discrete energy levels. In addition, one can see that the molecular 

energy spectrum is almost unaffected by twist angle.

Figure. S1 (a) Band structure of graphene leads. (b) Molecular energy spectrum of central molecules.
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