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Experimental Section

Materials and physical measurements:

All materials and solvents were obtained from Energy Chemical Co. Ltd., TCl 

(Shanghai) Development Co., Ltd., MACKLIN, Aladdin, Tianjin Guangfu Fine 

Chemical Research Institute, and used without further purification.

Fourier-transform Infrared (FT-IR) spectra were recorded at the range of 400-

4000 cm-1 on a Bruker ALPHA spectrometer. Thermogravimetric analyzer (TGA) 

was performed on a DTG-60 instrument (SHIMADZU, Beijing, China) at a heating 

rate of 5 oC min-1 from room temperature to 800 oC under nitrogen atmosphere with a 

flow rate of 100 mL min-1. Powder X-ray diffraction (PXRD) patterns of the samples 

were measured with a Cu-Kα X-ray radiation source (λ = 0.154056 nm) incident 

radiation by a Rigaku MiniFlEX 600 instrument operating at 40 kV voltage and 50 

mA current. UV-vis absorption spectra were recorded on a Shimadzu Corporation 

UV-2600 220V CH spectrometer. The Xe lamp (300 W) with 410 nm optical filters 

were readjusted to the power density of 100 mW cm-2 prior to the experimental 

process.

Synthesis:
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NH2-{MnMo6}-NH2 ([N(C4H9)4]3[MnMo6O18{(OCH2)3CNH2}2]), NH2-{CoMo6}-

NH2 ([N(C4H9)4]3[CoMo6O18{(OCH2)3CNH2}2]), NH2-{FeMo6}-NH2 

([N(C4H9)4]3[FeMo6O18{(OCH2)3CNH2}2]), and tetrakis(4-formylphenyl)silane 

(TFPS) were synthesized according to literatures.1-2

Mn-Anderson-COF: 1000 mg of NH2-{MnMo6}-NH2 and 119 mg of TFPS were 

dissolved in 15 mL of acetonitrile, and then added into a Teflon-lined autoclave. The 

Teflon-lined autoclave was placed in an oven at 80 oC for 3 days. The solid was 

thoroughly washed by acetonitrile and collected via centrifugation. The obtained solid 

was dried under vacuum to yield Mn-Anderson-COF (901 mg, 82% based on TFPS). 

Elemental Analysis: for SiC140H260Mn2Mo12N10O48: Calcd. Si 0.68%, C 40.60%, H 

6.28%, N 3.38%, Mn 2.66%, Mo 27.84%, Found Si 0.67%, C 40.52%, H 6.19%, N 

3.26%, Mn 2.54%, Mo 27.61%. IR (KBr, cm-1): 2960 (νas NH s), 2933 (ν CH s), 2873 

(ν CH s), 1643 (ν C=N m), 1481 (δ CH, s), 1382 (δ CH, m), 1263 (s), 1157 (m), 1093 

(ν CO m), 1030 (ν CO s), 941 (ν Mo=O s), 920 (ν Mo=O s), 903 (ν Mo=O s), 819 (w), 

736 (w), 667 (ν Mo-O-Mo s), 563 (m), 522 (w), 486 (w), 411(w) cm-1.

Co-Anderson-COF: A similar method as described above. The obtained solid 

was Co-Anderson-COF (878 mg, 80% based on TFPS). Elemental Analysis: for 

SiC140H260Co2Mo12N10O48: Calcd. Si 0.68%, C 40.52%, H 6.27%, N 3.38%, Co 

2.85%, Mo 27.79%, Found Si 0.67%, C 40.46%, H 6.17%, N 3.25%, Co 2.77%, Mo 

27.64%. IR (KBr, cm-1): 2962 (νas NH s), 2937 (ν CH s), 2875 (ν CH s), 1643 (ν C=N 

m), 1481 (δ CH, s), 1383 (δ CH, m), 1263 (s), 1157 (m), 1103 (ν CO m), 1031 (ν CO 

s), 939 (ν Mo=O s), 921 (ν Mo=O s), 904 (ν Mo=O s), 819 (w), 741 (w), 667 (ν Mo-

O-Mo s), 570 (m), 523 (w), 487 (w), 434 (w) cm-1.

Fe-Anderson-COF: A similar method as described above. The obtained solid was 

Fe-Anderson-COF (857 mg, 78% based on TFPS). Elemental Analysis: for 

SiC140H260Fe2Mo12N10O48: Calcd. Si 0.68%, C 40.58%, H 6.28%, N 3.38%, Fe 2.71%, 

Mo 27.83%, Found Si 0.67%, C 40.46%, H 6.17%, N 3.29%, Fe 2.66%, Mo 27.73%. 

IR (KBr, cm-1): 2962 (νas NH s), 2937 (ν CH s), 2875 (ν CH s), 1643 (ν C=N m), 1483 



(δ CH, s), 1383 (δ CH, m), 1263 (s), 1155 (m), 1089 (ν CO m), 1029 (ν CO s), 941 (ν 

Mo=O s), 922 (ν Mo=O s), 903 (ν Mo=O s), 821 (w), 725 (w), 667 (ν Mo-O-Mo s), 

563 (m), 526 (w), 479 (w), 451 (w) cm-1.

Ion exchange on Mn-Anderson-COF (Li+): 

300 mg of Mn-Anderson-COF was immersed in 2 mL of 100 mg diethyl ether 

solution of LiOTf at room temperature. The solution was change two times per day 

over two weeks. The process was monitored by digestion IR. Upon Li+ exchange, the 

characteristic peaks of TBA+ decreased as indicated at 2962 cm-1, 2937 cm-1 and 2875 

cm-1.

Si

CHO

CHO
OHC

CHO

+

NH2

NH2

M-Anderson-COF

Figure S1. Designed synthesis of diamondoid network of M-Anderson-COFs.
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Figure S2. IR spectrums of TFPS and NH2-{MnMo6}-NH2.
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Figure S3. (a) Experimental and simulated PXRD patterns of M-Anderson-COFs; (b) 
Experimental and simulated PXRD patterns of MOF-688, adapted with permission 

from Ref. [24].



Figure S4. PXRD patterns of Li+ exchanged M-Anderson-COFs.

Figure S5. IR spectrums of different samples.



Figure S6. TGA of different samples.

Figure S7. N2 sorption curves (77 K) of Co-Anderson-COF (Li+). 

Experimental procedure of photodegradation of organic dyes:

Catalysts (10 mg) were dispersed into the solution (100 mL) of organic dyes 

(100 mg/L), then magnetically stirred for 30 min in the dark. After this, the mixture 

was allowed to expose to visible light (λ > 410 nm) from a 300 W Xenon lamp at a 

distance of 5 cm between the liquid surface and the lamp. The solution was kept 

stirring during irradiation. At an interval of 10 min, 4 mL of the mixture was taken out 

of the beaker for analysis after centrifugation.



The radical scavenger experiments were performed using Isopropanol (IP, a 

scavenger of •OH, 99% 60 μL/mL), Superoxide dismutase (SOD, a scavenger of •O2
-, 

0.4 g/L), Ammonium Oxalate (AO, a scavenger of h+, 3 mmol/L), L-Histidine (L-His, 

a scavenger of 1O2, 3 mmol/L) and Catalase (CAT, a scavenger of H2O2, 0.3 g/L), 

respectively. Other conditions remain unchanged.
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Figure S8. (a) UV-vis spectra of RhB (a) and MB (b) without catalyst. 

Figure S9. UV-vis spectra of RhB (100 mg/L) after different illumination time 
intervals in the presence of M-Anderson-COF (0.1 mg/mL) under 300 W xenon 
lamp with 450 nm optical filter.



Figure S10. UV-vis spectra of MB (100 mg/L) after different illumination time 
intervals in the presence of M-Anderson-COF (0.1 mg/mL) under 300 W xenon 
lamp with 450 nm optical filter.
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Figure S11. Photodegradation of RhB and MB using M-Anderson-COF catalysts in 
water. Concentration of M-Anderson-COF: 0.1 mg/mL, concentration of dye: 100 
mg/L. The color change of dye when different M-Anderson-COF was used as 
catalyst [(a) dye = RhB, catalyst = Mn-Anderson-COF; (b) dye = MB, catalyst = 
Mn-Anderson-COF; (c) dye = RhB, catalyst = Co-Anderson-COF; (d) dye = MB, 
catalyst = Co-Anderson-COF; (e) dye = RhB, catalyst = Fe-Anderson-COF; (f) dye 
= MB, catalyst = Fe-Anderson-COF]. The sample interval is 10 min.



Figure S12. UV-vis spectra of RhB (100 mg/L) after different illumination time 
intervals in the presence of Ph-C=N-{MMo6}-N=C-Ph (0.1 mg/mL) under 300 W 
xenon lamp with 450 nm optical filter.

Figure S13. UV-vis spectra of MB (100 mg/L) after different illumination time 
intervals in the presence of Ph-C=N-{MMo6}-N=C-Ph (0.1 mg/mL) under 300 W 
xenon lamp with 450 nm optical filter.



Figure S14. UV-vis spectra of RhB (100 mg/L) after different illumination time 
intervals in the presence of M-Anderson-COF (0.1 mg/mL) and different scavengers.



Figure S15. UV-vis spectra of MB (100 mg/L) after different illumination time 
intervals in the presence of M-Anderson-COF (0.1 mg/mL) and different scavengers.
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Figure S16. The effect of different scavengers, isopropanol (IP), superoxide 
dismutase (SOD), ammonium oxalate (AO), L-Histidine (L-His) and catalase (CAT), 
and the absence of oxygen (under N2) on the degradation of RhB (a) and MB (b) over 
M-Anderson-COF under 60 min of visible light irradiation.
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Figure S17. Proposed photodegradation reaction mechanism.



Figure S18. UV-vis spectra of RhB and MB in the presence of recycled M-
Anderson-COF (0.1 mg/mL) in water under visible light irradiation.

(a) (b)

Figure S19. Recycling experiments of the photocatalytic degradation of RhB (a) and 
MB (b) using M-Anderson-COF in water under visible light irradiation.



Figure S20. The HOMO–LUMO energy diagram of NH2-tris-functionalized 
Anderson anions {MMo6} (M=Mn3+, Co3+, Fe3+). Adapted with permission from Ref. 
[3].

Table S1. Summary of the performance of reported materials for the 
photodegradation of RhB.

Materials
Catalyst 

(g/L)
RhB 

(mg/L)
Irradiation 

source
Efficiency Ref.

Mn-Anderson-COF 0.1 100
Visible 

light
98.6% 

(60 min)
This 
work

Co-Anderson-COF 0.1 100
Visible 

light
96.4% 

(60 min)
This 
work

Fe-Anderson-COF 0.1 100
Visible 

light
51.3% 

(60 min)
This 
work

Bn-Anderson-CMP
~97% 

(60 min)

Th-Anderson-CMP
0.4 10

Visible 
light ~94% 

(60 min)

4

TiO2 1.0 10
Visible 

light
~95% 

(210 min)
5

Benzothiadiazole based 
CMPs

1.0 10
Visible 

light
~87% 

(30 min)
6

{Mn(salen)2(H2O)2[AlMo6(
OH)6O18]}[arg]•16H2O

100% 
(300 min)

{Mn(salen)2(H2O)2[CrMo6(
OH)6O18]}[arg]•11H2O

0.4 10
Visible 

light 99.6% 
(300 min)

7



Table S2. Summary of the performance of reported materials for the 
photodegradation of MB.

Materials Catalyst (g/L)
MB 

(mg/L)
Irradiation 

source
Efficiency Ref.

Mn-Anderson-COF 0.1 100 Visible light
99.6% 

(60 min)
This 
work

Co-Anderson-COF 0.1 100 Visible light
98.4% 

(60 min)
This 
work

Fe-Anderson-COF 0.1 100 Visible light
61.1% 

(60 min)
This 
work

Visible light
87.8% 

(60 min)
Fc-TEB-CMP 0.25 31.9

Solar light
92.9% 

(60 min)

8

Bn-Anderson-CMP
100% 

(40 min)

Th-Anderson-CMP
0.4 10 Visible light

~97%
(60 min)

4

Ag3PO4 3.0 15.3 Visible light
100% 

(10 min)
9

PDINH 0.5 10 Visible light
50% 

(400 min)
10

[Ni2(H2O)2(qa)2(4,4`-
bpy)2U5O14(H2O)2(OAc)2]

2.0 35.9 Visible light
80% 

(240 min)
11

Fe3O4@MIL-100(Fe)
0.1 

(0.1 mL H2O2)
40 Visible light

99.8% 
(200 min)

12

NTU-9
0.5 (5drops of 

30% H2O2)
31.9 Visible light

100% 
(20 min)

13

MIL-53(Fe)
1.0 

((NH4)2S2O8)
127.6 Visible light

~40% 
(60 min)

14

ZnTCPc/UIO-66(NH2) 0.2 15 Visible light
~90% 

(120 min)
15

Cu(dm-bim)
30 (5 drops of 

30% H2O2)
18.7 Visible light

96% 
(20 min)

16

[CuII(salimcy)](CuII)2] 0.6 12 Visible light
96% 

(20 min)
17

Fe3O4/FePc
1.0 (1 mL 9M 

H2O2)
10 Visible light

78% 
(120 min)

18

mesoporous BiVO4 1.0 10 Visible light
85% 

(180 min)
19

VC 1.0% 0.5 10 Visible light
~90% 

(120 min)
20

Fe-Ni/SiO2 0.85 (3mM 30 Visible light 94.9% 21



(60 min)

20 Visible light
99.0% 

(60 min)H2O2, pH=3.0)

20 Solar light
99.8% 

(60 min)

CuO/NX
0.1 

(PH = 11)
5 Solar light

90% 
(160 min)

22

g-C3N4/Co3O4 0.5 3.19 Solar light
100% 

(90 min)
23
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