Electronic Supplementary Information (ESI)

Cu₂B₂ Monolayer with Planar Hypercoordinate Motifs: an Efficient Catalyst for

CO Electroreduction to Ethanol

Jingjing Jia,^a Haijun Zhang,^{b,*} Zhongxu Wang,^c Jingxiang Zhao,^{*,a} Zhen Zhou^{*,c}

^a College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and

Electronic Bandgap Materials, Ministry of Education, Harbin Normal University,

Harbin, 150025, P. R. China

^b Center for Aircraft Fire and Emergency, College of Economics and Management,

Civil Aviation University of China, Tianjin, 300300, P. R. China

^c School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Nankai University, Tianjin, 300350, P. R. China.

* To whom correspondence should be addressed. Email: xjz_hmily@163.com; hjzhang ahu@163.com (HZ); zhouzhen@nankai.edu.cn (ZZ).

Computional Details on Dissolution Potential and Overpotential

To evaluate the stability of Cu_2B_2 monolayer in strong acidic media, we computed the dissolution potentials (U_{dis} , in V) of Cu in Cu_2B_2 monolayer at pH=0, which was defined as: $U_{dis} = U_{Cu}^0 + \left[E_{Cu,bulk} - \left(E_{Cu_2B_2} - E_{d-Cu_2B_2}\right)\right]/ne$, where U_{Cu}^0 is the standard dissolution potential of Cu in the bulk form (0.34 V), d-Cu_2B_2 is the defective Cu_2B_2 monolayer by dissolving (removing) one Cu to solutions, and *n* is the coefficient for the aqueous dissolution reaction: Cu + 2H⁺ \leftrightarrow Cu²⁺ + H₂, namely, *n* equals to 2. According to this definition, the U_{dis} value of Cu in Cu₂B₂ monolayer is computed to be about 1.76 V.

On the other hand, the overpotential (η) value was obtained according to the following equation: $\eta = U_0 - U_L$, where U₀ is the computed equilibrium potential of COR to C₂H₅OH production ($U_0 = -(\Delta G)/n$), and U_L is the limiting potential of COR on Cu₂B₂ monolayer (-0.59 V). Since the ΔG value for CO reduction to C₂H₅OH (2CO + 8H⁺ + 6e⁻ \rightarrow C₂H₅OH + H₂O in Fig. 5a) was computed to be -1.85 eV, the computed U_0 is [- (-1.85)/8) = 0.23 V]. Thus, the negative overpotential (- η) of COR on Cu₂B₂ monolayer is -[0.23 V - (-0.59 V)] = -0.82 V, which is much smaller than the U_{dis} value of Cu (1.76 V), suggesting that Cu within the Cu₂B₂ framework can survive under the realistic experimental conditions of CORR, and thus ensuring their excellent long-term stability.

Elementary step	Free energy change (ΔG)
$CO(g) \rightarrow ^{*}CO$	-0.77
$^{*}\mathrm{CO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{COH}$	0.59
$^{*}CO + H^{+} + e^{-} \rightarrow ^{*}CHO$	0.71
$^{*}COH + H^{+} + e^{-} \rightarrow ^{*}CHOH$	-0.01
$^{*}COH + H^{+} + e^{-} \rightarrow ^{*}C + H_{2}O$	1.28
$^{*}\mathrm{CHOH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	-0.22
$^{*}\mathrm{CHOH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH} + \mathrm{H}_{2}\mathrm{O}$	1.74
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}$	-0.77
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3}\mathrm{OH}^{*}$	0.04
$^{*}CH_{2} + CO (g) + e^{-} \rightarrow ^{*}CH_{2}CO$	-0.20
$^{*}CH_{2}CO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CHO$	-0.59
$^{*}CH_{2}CO + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CO$	-0.39
$^{*}\mathrm{CH}_{2}\mathrm{CO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{COH}$	0.04
$^{*}CH_{2}CHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CH_{2}O$	-0.68
$^{*}\mathrm{CH}_{2}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CHO}$	0.18
$^{*}CH_{2}CHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CHOH$	2.29
$^{*}CH_{2}CH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}O$	0.07
$^{*}CH_{2}CH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CH_{3}O$	0.54
$^{*}CH_{2}CH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CH_{2}OH$	1.06
$^{*}CH_{3}CH_{2}O + H^{+} + e^{-} \rightarrow CH_{3}CH_{2}OH + ^{*}$	0.53

Table S1. The computed free energy changes of each possible elementary step during

the electrochemical reduction of CO to C_2H_5OH on Cu_2B_2 monolayer.

Figure S1. The computed phonon dispersions of the predicted Cu_2B_2 monolayer.

Figure S2. The computed free energy profiles for the C–C coupling through the CO direct dimerization on Cu_2B_2 monolayer and the corresponding structures of the reaction intermediates. Bronze, pink, gray, red, and cyan balls represent Cu, B, C, O, and H atoms, respectively.

Figure S3. Gibbs free energy profiles for CO reduction to CH_4 on Cu_2B_2 monolayer surface at zero and applied potentials.

Figure S4. The kinetic reaction pathway of the hydrogenation of $^{*}CH_{2}$ species to $^{*}CH_{3}$ species. TS denotes the transition state.

Figure S5. The computed phonon dispersion spectra of the predicted (a) Fe_2B_2 , (b) Co_2B_2 , and (c) Ni_2B_2 monolayers.

Figure S6. Density of states (DOS) of $B-2p_z$ orbitals for (a) Cu_2B_2 and (b) Ni_2B_2 monolayers. The dashed lines indicate the Fermi level.