Supporting Information

A Universal and Facile Approach to Suppress Dendrite Formation

for Zn and Li Metal Anode

Jin Cao^{1,2}, Dongdong Zhang^{1,2}, Xinyu Zhang^{3*}, Montree Sawangphruk⁴, Jiaqian

Qin^{2}, and Riping Liu³*

¹ International Graduate Program of Nanoscience & Technology, Chulalongkorn University, Thailand

²Research Unit of Advanced Materials for Energy Storage, Metallurgy and

Materials Science Research Institute, Chulalongkorn University, Bangkok 10330,

Thailand

³State Key Laboratory of Metastable Materials Science and Technology, Yanshan

University, Qinhuangdao 066004, P. R. China

⁴Centre of Excellence for Energy Storage Technology (CEST), Department of

Chemical and Biomolecular Engineering, School of Energy Science and Engineering,

Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

*Corresponding Author. Fax: +66 2611 7586 E-mail: jiaqian.q@chula.ac.th (J. Q.), xyzhang@ysu.edu.cn (X. Z.)

Scheme. S1 Schematic illustration of material fabrication processes.

Fig. S1 Voltage profiles of galvanostatic Zn plating/stripping for different separator, (a) GF/GO0.2 separator and (b) GF/GO0.5 separator.

Fig. S2 Surface images of pristine Zn foil.

Fig. S3 SEM images of the Zn dendrites in GF separator at 2 mA cm⁻².

Fig. S4 (a) The oxidation profiles of the zinc-titanium half-batteries (left) with the GF separator and (right) the GF/GO1 separator between 0 and 0.3 V (*vs* Zn/Zn²⁺); (b) EIS plots of zinc-titanium half-batteries using the GF/GO1 and GF separator.

Fig. S5 Voltage profiles of the initial Zn plating on Ti foil in zinc-titanium halfbatteries with the GF separator and the GF/GO1 separator at 5 mA cm⁻².

Fig. S6 SEM images of GF/GO1 separator (a) (b); GF (c) and GO (d).

Fig. S7 Wettability test of GF (a) and GF/GO1 (b) separator.

Sample	Porosity (%)	Electrolyte uptake (%)
GF separator	1232	13214
GF/GO1 separator	1473	15891

Table. S1 Porosity and electrolyte uptake of GF and GF/GO separator.

Fig. S8 (a) The Nyquist plots of the GF and GF/GO1 separator at room temperature;

(b) The ionic conductivity of GF and GF/GO1 separator.

Fig. S9 XRD patterns of prepared MnO₂ cathode material before and after ball milling.

Fig. S10 SEM images of MnO_2 before (a-b) and after (c-d) ball milling.

Fig. S11 SEM images of MnO_2 (a) and (b) after coating.

Fig. S12 (a) Rate performances and (b) the electrochemical impedance spectra of Zn/MnO_2 cells using different separators.

Table. S2 The R_s , R_{sf} and R_{ct} of the Zn-symmetric batteries and Zn//MnO₂

Zn-symmetric batteries	$R_{s}\left(\Omega ight)$	$R_{sf}(\Omega)$	$R_{ct}(\Omega)$
GF separator	6.084	83.158	2733
GF/GO1 separator	4.513	21.918	657.3
7n//MnO battories	P (O)	P (O)	
GE separator	K_{s} (32) 5.812	Λ_{sf} (32) 11.821	π_{ct} (52)
or separator	5.012	11.021	505.2

batteries with different separator.

Fig. S13 Electrochemical impedance spectra of (a) Zn-symmetric batteries with GF/GO1 separator and (b) GF separator after cycling; Electrochemical impedance spectra of (c) Zn/MnO₂ full batteries GF/GO1 separator and (d) GF separator after cycling.

Fig. S14 (a) Cycling performance of the Zn/MnO_2 full batteries using different separators at a current density of 0.5 A g⁻¹ and (b) the capacity retention rate of other zinc ion batteries using different cathode materials after cycles.

Fig. S15 $i(v)/v^{1/2}-v^{1/2}$ plot in different voltage of GF/GO1 separator Zn/MnO₂ cell in (a) charge and (b) discharge.

Fig. S16(a) CV curves of GF separator Zn/MnO₂ cell at different scan rate; (b) b values of GF separator MnO₂/Zn cell at di \Box erent peaks, calculated based on multi-rate CV results; (c) Capacitive charge storage contribution at the scan rate of 1.0 mV s⁻¹.

Fig. S17 (a) Voltage profiles of different Li-symmetric cells with GF/GO1 separator and GF separator during Li plating/stripping using step-up current densities; (b) Voltage profiles in first ten cycles.