Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

### **Electronic Supplementary Information (ESI)**

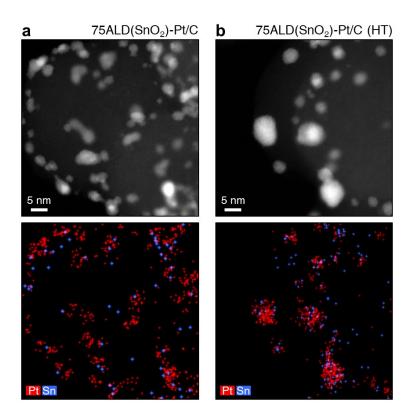
# Atomic-Layer-Deposited SnO<sub>2</sub> on Pt/C Prevents Sintering of Pt Nanoparticles and Affects Reaction Chemistry for Electrocatalytic Glycerol Oxidation Reaction

Daewon Lee,‡<sup>a</sup> Youngmin Kim,<sup>a</sup> Hyunsu Han,<sup>b</sup> Won Bae Kim,<sup>b</sup> Hyunju Chang,<sup>c</sup> Taek-Mo Chung,<sup>d</sup> Jeong Hwan Han,<sup>\*de</sup> Hyun Woo Kim,\*<sup>c</sup> Hyung Ju Kim\*<sup>af</sup>

<sup>&</sup>lt;sup>a</sup> Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea. E-mail: hjkim@krict.re.kr

<sup>&</sup>lt;sup>b</sup> Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea.

<sup>&</sup>lt;sup>c</sup> Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea. E-mail: ahwk@krict.re.kr


<sup>&</sup>lt;sup>d</sup> Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, South Korea.

<sup>&</sup>lt;sup>e</sup> Department of Materials Science and Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, South Korea. E-mail: jhan@seoultech.ac.kr

<sup>&</sup>lt;sup>f</sup> Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.

<sup>‡</sup> Present address: University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

# **Supplementary Figures**



**Fig. S1. Electron microscopy analysis of 75ALD(SnO<sub>2</sub>)-Pt/C. a,b**, HAADF-STEM images (upper) and corresponding EDS elemental mapping (lower) of the composite of Pt and Sn for 75ALD(SnO<sub>2</sub>)-Pt/C (**a**) and 75ALD(SnO<sub>2</sub>)-Pt/C (HT) (**b**).

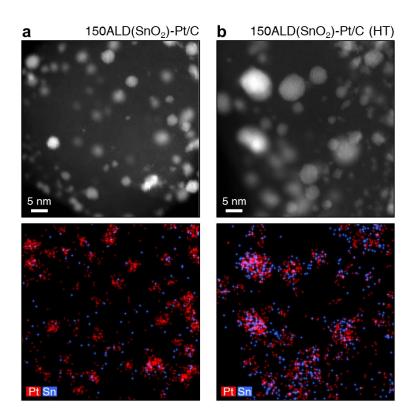



Fig. S2. Electron microscopy analysis of 150ALD( $SnO_2$ )-Pt/C. a,b, HAADF-STEM images (upper) and corresponding EDS elemental mapping (lower) of the composite of Pt and Sn for 150ALD( $SnO_2$ )-Pt/C (a) and 150ALD( $SnO_2$ )-Pt/C (HT) (b).

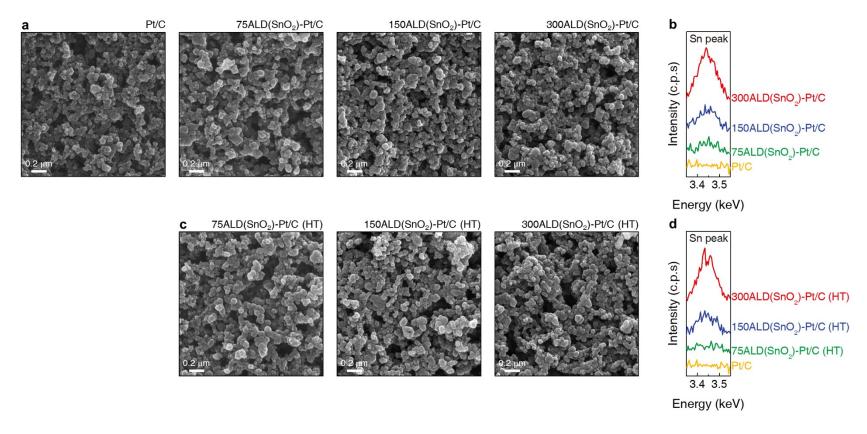



Fig. S3. Electron microscopy and elemental analyses of Pt/C and ALD(SnO<sub>2</sub>)-Pt/C. a,c, SEM images for pristine Pt/C and ALD(SnO<sub>2</sub>)-Pt/C with various ALD cycles before (a) and after (c) heat treatment. b,d, Corresponding EDS spectra demonstrating the existence of Sn for pristine Pt/C and ALD(SnO<sub>2</sub>)-Pt/C with various ALD cycles before (b) and after (d) heat treatment.

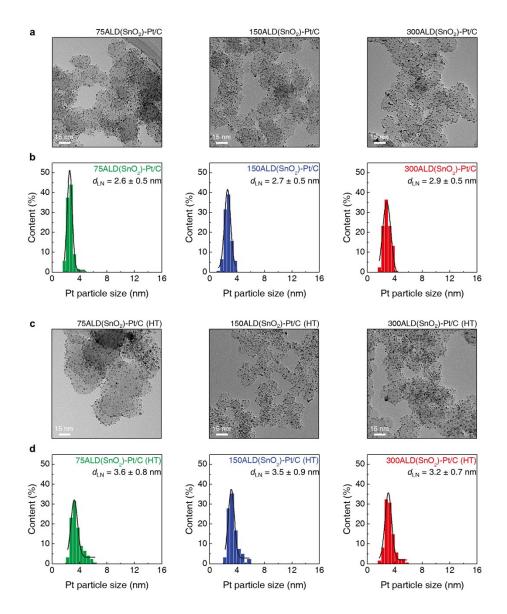



Fig. S4. Morphological, particle size, and particle size distribution analyses of  $ALD(SnO_2)-Pt/C$  before and after heat treatment. a,b,c,d, TEM images (a,c) and corresponding Pt particle size distribution (b,d) for  $ALD(SnO_2)-Pt/C$  with various ALD cycles before (a,b) and after (c,d) heat treatment. Note that estimated Pt particle length-number mean diameter  $(d_{LN})$  values are presented for each specimen.

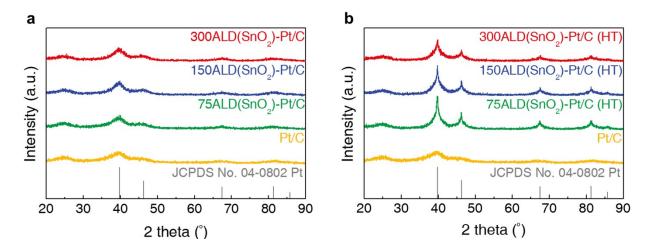
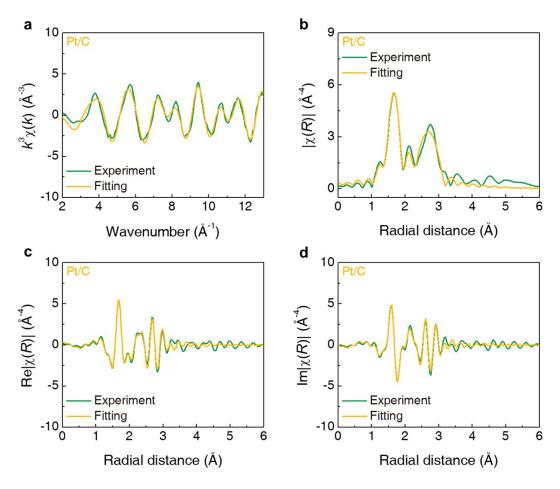




Fig. S5. XRD characteristics of Pt/C and ALD(SnO<sub>2</sub>)-Pt/C. a,b, XRD spectra for pristine Pt/C and ALD(SnO<sub>2</sub>)-Pt/C with various ALD cycles before (a) and after (b) heat treatment. For comparison, the reference crystallographic data for Pt (JCPDS No. 04-0802) are displayed.



**Fig. S6.** Pt  $L_3$ -edge EXAFS fitting for Pt/C. a,b,c,d,  $k^3$ -weighted EXAFS function (a), the magnitude of  $k^3$ -weighted FT-EXAFS spectrum (b), and the real (c) and imaginary (d) parts of corresponding  $k^3$ -weighted FT-EXAFS spectrum from Pt  $L_3$ -edge of pristine Pt/C.

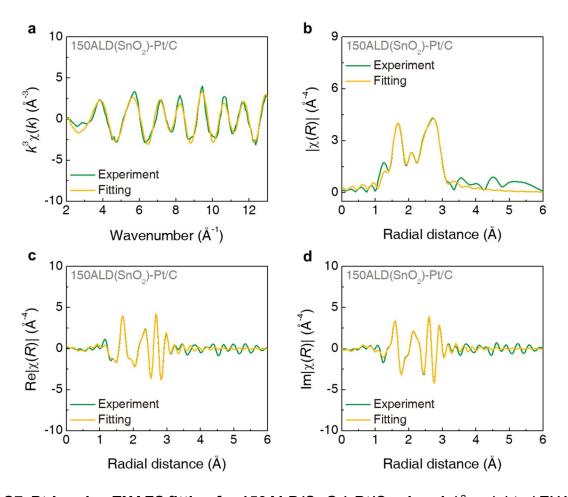



Fig. S7. Pt  $L_3$ -edge EXAFS fitting for 150ALD(SnO<sub>2</sub>)-Pt/C. a,b,c,d,  $k^3$ -weighted EXAFS function (a), the magnitude of  $k^3$ -weighted FT-EXAFS spectrum (b), and the real (c) and imaginary (d) parts of corresponding  $k^3$ -weighted FT-EXAFS spectrum from Pt  $L_3$ -edge of 150ALD(SnO<sub>2</sub>)-Pt/C.

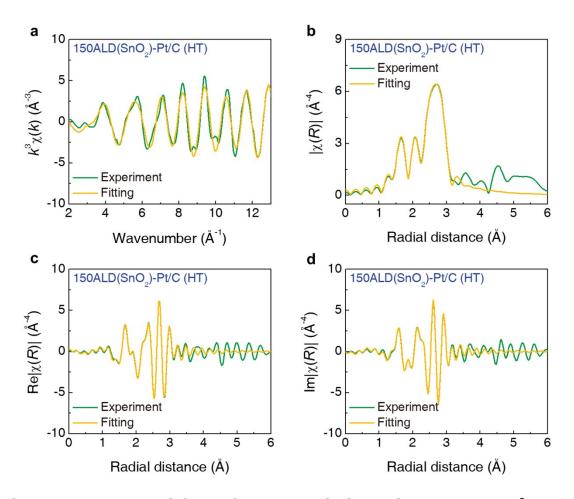



Fig. S8. Pt  $L_3$ -edge EXAFS fitting for 150ALD(SnO<sub>2</sub>)-Pt/C (HT). a,b,c,d,  $k^3$ -weighted EXAFS function (a), the magnitude of  $k^3$ -weighted FT-EXAFS spectrum (b), and the real (c) and imaginary (d) parts of corresponding  $k^3$ -weighted FT-EXAFS spectrum from Pt  $L_3$ -edge of 150ALD(SnO<sub>2</sub>)-Pt/C (HT).

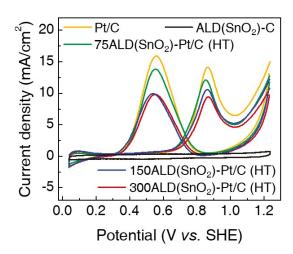



Fig. S9. Supplementary electrochemical performance analysis in an electrochemical half-cell system for Pt/C and heat-treated  $ALD(SnO_2)-Pt/C$  catalysts for the electrocatalytic GOR. CV curves corresponding to current density for the electrocatalytic GOR over pristine Pt/C and heat-treated  $ALD(SnO_2)-Pt/C$  with various ALD cycles in 2 M glycerol/0.5 M  $H_2SO_4$  solution at room temperature.

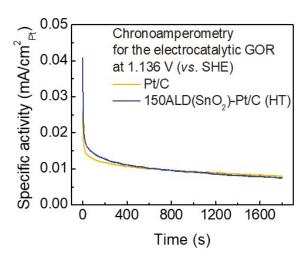
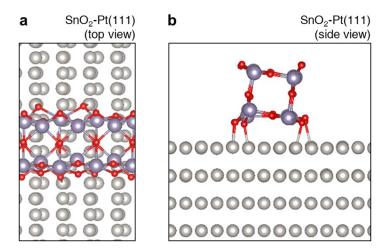




Fig. S10. Supplementary electrochemical performance analysis of Pt/C and heat-treated 150ALD(SnO<sub>2</sub>)-Pt/C catalysts for the electrocatalytic GOR in an electrochemical batch reactor system. Chronoamperometry corresponding to specific activity for the electrocatalytic GOR over pristine Pt/C and 150ALD(SnO<sub>2</sub>)-Pt/C (HT) catalysts.



**Fig. S11. Computational surface models. a**,**b**, Optimized model of  $SnO_2$ -Pt(111) surface in top (**a**) and side (**b**) views. As the initial  $SnO_2$  structure is extracted from the  $SnO_2$ (110) surface, the optimized  $SnO_2$  structure shows characteristics of the  $SnO_2$  (110) surface.

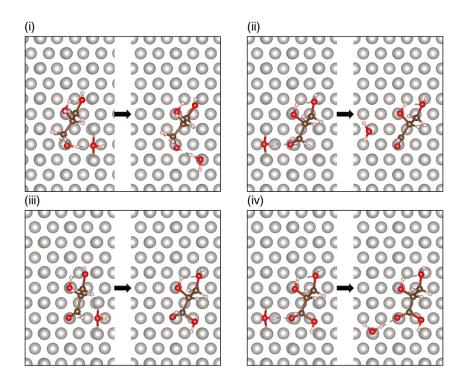



Fig. S12. Optimized atomistic structures (top view) of a possible reaction pathway for the electrocatalytic oxidation from glycerol to *GLA* via *GAD*, on the Pt(111) surface.

# **Supplementary Scheme**

# Glycerol Anode Cathode H\* Reaction products (e.g. GAD and GLA)

Scheme S1. Schematic illustration of an electrolysis cell system for electrocatalytic GOR technology to co-produce renewable chemicals and hydrogen.

# **Supplementary Tables**

**Table S1.** Summary of the length-number mean diameter ( $d_{LN}$ ) of Pt particles for ALD(SnO<sub>2</sub>)-Pt/C with various ALD cycles before and after heat treatment. Note that the changes in  $d_{LN}$  after heat treatment are depicted.

|                | 75ALD(SnO <sub>2</sub> )-Pt/C | 150ALD(SnO <sub>2</sub> )-Pt/C | 300ALD(SnO <sub>2</sub> )-Pt/C |
|----------------|-------------------------------|--------------------------------|--------------------------------|
| Before HT (nm) | 2.6±0.5                       | 2.7±0.5                        | 2.9±0.5                        |
| After HT (nm)  | 3.6±0.8                       | 3.5±0.9                        | 3.2±0.7                        |
| Change (nm)    | 1.0                           | 0.8                            | 0.3                            |

**Table S2.** Summary of the obtained electrochemical Pt surface area and Pt metal dispersion ( $D_{\text{echem}}$ ) *via* H<sub>2</sub> desorption for pristine Pt/C and heat-treated ALD(SnO<sub>2</sub>)-Pt/C with various ALD cycles.

|                                                                      | Pt/C  | 75ALD(SnO <sub>2</sub> )-Pt/C (HT) | 150ALD(SnO <sub>2</sub> )-Pt/C (HT) | 300ALD(SnO <sub>2</sub> )-Pt/C (HT) |
|----------------------------------------------------------------------|-------|------------------------------------|-------------------------------------|-------------------------------------|
| Electrochemical Pt surface area (cm²)                                | 2.55  | 1.98                               | 2.04                                | 2.20                                |
| Electrochemical Pt surface area per Pt loading (m²/g <sub>Pt</sub> ) | 82.38 | 65.88                              | 70.59                               | 80.48                               |
| D <sub>echem</sub>                                                   | 0.33  | 0.26                               | 0.28                                | 0.32                                |

**Table S3.** Comparison of the catalytic activity for electrocatalytic GOR with the reported Pt-based catalysts.

|                                    |                                                       |                  | Electrocatalytic GOR                                               |           |
|------------------------------------|-------------------------------------------------------|------------------|--------------------------------------------------------------------|-----------|
| Catalyst                           | Reaction Solution                                     | Scan Rate (mV/s) | Specific Activity (mA/cm <sup>2</sup> <sub>Pt</sub> ) <sup>a</sup> | Reference |
| PtNi/C                             | 2 M glycerol + 0.5 M H <sub>2</sub> SO <sub>4</sub>   | 50               | 0.27                                                               | S1        |
| Co@Pt/CCE                          | 0.5 M glycerol + 0.5 M H <sub>2</sub> SO <sub>4</sub> | 50               | 0.25                                                               | S2        |
| PtAu@Ag                            | 1 M glycerol + 0.1 M HClO <sub>4</sub>                | 10               | 0.27                                                               | S3        |
| Pt nanoflowers                     | 1 M glycerol + 0.5 M H <sub>2</sub> SO <sub>4</sub>   | 50               | 0.32                                                               | S4        |
| 75ALD(SnO <sub>2</sub> )-Pt/C (HT) | 2 M glycerol + 0.5 M H <sub>2</sub> SO <sub>4</sub>   | 50               | 0.43                                                               | This work |

<sup>&</sup>lt;sup>a</sup> Current density normalized by the electrochemically active surface area. Some values were calculated by information given in the reference.

### **Supplementary References**

- S1 S. Lee, H. J. Kim, S. M. Choi, M. H. Seo and W. B. Kim, *Appl. Catal., A*, 2012, **429-430**, 39-47.
- S2 B. Habibi and S. Ghaderi, *Int. J. Hydrogen Energy*, 2015, **40**, 5115-5125.
- S3 Y. Zhou, Y. Shen and J. Xi, *Appl. Catal.*, *B*, 2019, **245**, 604-612.
- S4 Y. Zuo, L. Wu, K. Cai, T. Li, W. Yin, D. Li, N. Li, J. Liu and H. Han, *ACS Appl. Mater. Interfaces*, 2015, **7**, 17725-17730.