Supplementary information

Enabling Electrochemical N₂ Reduction to NH₃ in the Low

Overpotential Region Using Non-Noble Metal Bi Electrodes

via Surface Composition Modification

Youn Jeong Jang^{1,2} and Kyoung-Shin Choi^{1,*}

¹Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States ²Department of Chemical Engineering, University of Hanyang, Seongdong-gu, Seoul, 04763, Republic of Korea

* Correspondence and requests for materials should be addressed to K.-S.C.

(email: kschoi@chem.wisc.edu).

Figure S1. LSVs of a p-Bi electrode obtained in 0.5 M phosphate buffer (pH 7.5) saturated with N_2 (solid) or Ar (dashed) after applying -0.3 V vs. RHE for 1 min to remove the surface Bi_2O_3 layer (scan rate: 10 mV/s).

Figure S2. LSVs of the Ti foil used as the substrate to deposit p-Bi electrode obtained in 0.5 M phosphate buffer (pH 7.5) saturated with N_2 (solid) or Ar (dashed) with (blue) and without (red) 25 mM V_2O_5 (scan rate: 10 mV/s).

Figures S3. The CV treatment performed on a p-Bi electrode in 0.5 M phosphate buffer (pH 7.5) (scan rate: 25 mV/s). The potential was initially swept from the OCP to 1.62 V vs. RHE (denoted as a) and then cycled between 1.62 V vs. RHE and -0.65 V vs. RHE ($b \rightarrow c \rightarrow d \rightarrow e$) three times and ended at 1.62 V vs. RHE.

Figure S4. XRD patterns of p-Bi and ap-Bi electrodes. The peaks generated by Bi (JCPDS No: 85-1329) are indicated by red dots. The Ti (JCPDS No: 44-1294) and TiO₂ (JCPDS No. 34-0180) peaks from a Ti substrate are indicated by black and gray dots, respectively.

Figure S5. Bi 4f XPS spectra of (A) Bi_2O_3 (Aldrich, 99.999 %), (B) $BiPO_4$ (Aldrich, 99.99 %) and (C) $BiVO_4$ (prepared using the method reported in Ref. 36 in the main text) used as references to index the Bi spectra shown in Figures 1C-D, 4C and 5C.

Figure S6. J-t profiles of p-Bi, ap-Bi, and apv-Bi electrodes during ENRR at various potentials in N₂ saturated phosphate buffer (pH 7.5).

Figure S7. (A) SEM image and (B) XRD pattern of an apv-Bi electrode. The peaks generated by Bi (JCPDS No: 85-1329) are indicated by red dots. The Ti (JCPDS No: 44-1294) and TiO₂ (JCPDS No. 34-0180) peaks from a Ti substrate are indicated by black and gray dots, respectively.

Figure S8. V 2p XPS spectra of (A) BiVO₄ and (B) VOPO₄ used as references to index V peaks shown in Figures 4E and 5D.

Category	Symbol	Catalyst	F.E. % (Poten.)	Electrolyte (pH)	Reference	
Noble Metal		Au nanocage	30.2 %(-0.4 V _{RHE})	0.5 M NaClO ₄	Nanoenergy, 2018, 49, 316	
		a-Au NP/RGO	10.1 % (-0.2 V _{RHE})	Diluted HCI (pH 1)	Adv. Mater. 2017, 29, 1700001	
		THH-Au NR	4.0 % (-0.2 V _{RHE})	0.1 M KOH (pH 13)	Adv. Mater. 2017, 29, 1604799	
		Au NP/NCM	22.0 % (-0.1 V _{RHE})	0.1 M HCl (pH 1)	Angew. Chem. In. Ed. 2018, 57, 12360	
	0	Ag nanosheet	4.8 % (-0.6 V _{RHE})	0.1 M HCl (pH 1)	Chem. Commun. 2018, 54, 11427	
Non-Noble Metal	•	Mo₂N	4.5 % (-0.3 V _{RHE})	0.1 M HCl (pH 1)	Chem. Commun. 2018, 54, 8474	
	٠	Mo atom	14.6 % (-0.3 V _{RHE})	0.1 M KOH (pH 13)	Angew. Chem. Int. Ed. 2019, 58, 2321	
		Fe/Fe ₃ O ₄	8.29 % (-0.3 V _{RHE})	0.5 M KH ₂ PO ₄ (pH 7.5)	ACS Catal. 2018, 8, 9312	
		Fe-N-C	56.55 % (0.0 V _{RHE})	0.1 M KOH (pH 13)	Nat. Commun. 2019, 10:341	
		VN	6.5 % (-0.2 V _{RHE})	N ₂ -H ₂ (1 atm, 0.1 L/min)	J. Am. Chem. Soc. 2018, 140, 13387	
	*	a-Bi ₄ V ₂ O ₁₁	10.16 % (-0.2 V _{RHE})	Diluted HCl (pH 1)	Angew. Chem. Int. Ed. 2018, 57, 6073	
	*	defective Bi	11.68 % (-0.6 V _{RHE})	0.2 M Na ₂ SO ₄	Angew. Chem. Int. Ed. 2019, 58, 1	
	*	Bi NC	66 % (-0.6 V _{RHE})	0.5 M K ₂ SO ₄ (pH 3.5)	Nat. Catal. 2019, 2, 448	
	*	р-Ві	3.7 % (-0.3 V _{RHE})	0.5 M KH ₂ PO ₄ (pH 7.5)	This work	
	*	apv-Bi	13.2 % (-0.2 V _{RHE})	0.5 M KH ₂ PO ₄ (pH 7.5)	This work	
Metal free		B ₄ C	15.95 % (-0.75 V _{RHE})	Diluted HCl (pH 1)	Nat. Commun. 2018, 9:3485	

Figure S9. Literature survey of the highest FEs for NH₃ production reported to date. A table summarizing the performances is also shown. Any study that reports NH₃ production at a potential where NH₃ production is thermodynamically not possible is not included. The shaded region shows the catalysts that achieved a FE for NH₃ production greater than 10% at a potential \leq -0.2 V vs. RHE.

Figure S10. (A) ¹H-NMR spectra of ¹⁵NH₄⁺ produced by ENRR using the ap-Bi and apv-Bi electrodes at -0.2 V vs. RHE; (B) ¹H-NMR spectra of ¹⁵NH₄⁺ in standard solutions and (C) the resulting calibration curve.

Figure S11. The J-t plot of the apv-Bi at -0.2 V vs RHE for 24 hours in N₂-saturated phosphate buffer (pH 7.5) containing 25 mM V_2O_5 . The FE for NH₃ production obtained from this experiment was 11.7%.

Figure S12. (A) Changes in FE for NH₃ production of an apv-Bi electrode for repeated ENRR at -0.2 V vs. RHE in 0.5 M phosphate buffer (pH 7.5) without 25 mM V₂O₅. (B) V 2p XPS spectrum of an apv-Bi electrode before (filled squares) and after (empty squares) repeating ENRR 3 times at -0.2 V vs. RHE in 0.5 M phosphate buffer (pH 7.5) without 25 mM V₂O₅.

Table S1. Yields and production rates of NH₃ obtained by p-Bi, ap-Bi, and apv-Bi electrodes in N₂-saturated phosphate buffer (pH 7.5).

Potential		Yield (µg/cm ²))	Production rate (μg/cm ² ·h)			
V vs RHE	p-Bi	ap-Bi	apv-Bi	p-Bi	ap-Bi	apv-Bi	
-0.2	0.00	0.65	7.53	0.00	0.43	5.02	
-0.3	1.41	7.28	12.80	0.94	4.85	8.53	
-0.4	1.12	5.12	8.67	0.75	3.41	5.78	