Tuning the Morphology of Segmented Block copolymers with Zr-MOF nanoparticles for Durable and Efficient Hydrocarbon Separation Membranes

Ali Pournaghshband Isfahani,^{ab} Morteza Sadeghi,^c Somaye Nilouyal,^{ab} Guoji Huang,^{ab} Ansori Muchtar,^{ab} Masateru M. Ito, ^{ab} Daisuke Yamaguchi,^{ab} Easan Sivaniah,^{*ab} and Behnam Ghalei^{*ab}

a. Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto,606-8501, Japan

b. Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

c. Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Isfahan, Iran

* Corresponding authors. Email: esivanah@icems.kyoto-u.ac.jp; bghalei@icems.kyoto-u.ac.jp; Tel: +81-75-753-9865

1.1. Gas permeation test

The gas permeability of all membranes was measured using a constant volume-variable pressure method. The permeation gas cell comprises a stainless steel holder with an effective area of 2cm^3 (Millipore XX4502500) equipped with gas and vacuum lines ¹. The changes in pressure and temperature are recorded by an absolute pressure sensor (Keller PAA33X). Gas transport in the polyurethane membranes is explained by the solution-diffusion mechanism, where the gas permeability is the product of gas diffusivity (D) and gas solubility (S) coefficients: $P_i=D_i\times S_i$. The gas permeation coefficient is calculated from equation S1:

$$P = J_{i} \frac{l}{\Delta p} = 10^{10} \frac{273.15 V}{76 AT} (\frac{dp}{dt}) \frac{l}{\Delta p}$$
(S1)

In eq.S1, J_i is the gas flux, I is the membrane thickness, and Δp is the pressure drop between the feed and permeate side of the (dp)

membrane. Besides, $\langle \overline{dt} \rangle$ is the pressure difference rate in the steady-state gas transmission through the membrane. V, A, and T represent the permeate volume, the effective area of the membrane, and measurement temperature, respectively. The gas permeability unit is mol.m.m⁻².s⁻¹.Pa⁻¹ or barrer=10⁻¹⁰cm³(STP)cm cm⁻²s⁻¹cmHg⁻¹.

The ideal selectivity of the membrane $\alpha_{i/j}$ is calculated by the ratio of permeability coefficients of two individual gases i and j, which also can be written as the product of the diffusivity and solubility coefficients:

$$\alpha_{i/j} = \frac{P_i}{P_j} = \frac{D_i S_i}{D_j S_j}$$
(S2)

The diffusivity coefficient of each gas can be calculated from the time-lag method:

$$D_i = \frac{l^2}{6\theta}$$
(S3)

Linear extrapolation of the slope from the steady-state region of p vs. t curve and compute the x-axis intercept gives θ .

The mixed gas separation properties of the membrane were determined for CO_2/N_2 (50/50 vol.%) and CO_2/H_2 (50/50 vol.%) at 4 bar and 25°C. The stage cut was kept less than 1% to ensure that the feed gas composition does not change over time. The permeate was analyzed by GC gas chromatography and the separation factor can be obtained by equation S4:

$$\alpha_{i/j} = \frac{\frac{y_i}{y_j}}{\frac{x_i}{x_j}}$$
(S4)

where x and y are the gas mol fractions in the feed and permeate, respectively.

Fig. S1 Schematic representation of PU synthesis

Fig. S2 FTIR spectra of non-functionalized UiO66 and amine-functionalized UiO66 particles.

Fig. S3 TGA thermograms of the PU/UiO66 MMMs

Fig. S4 (a) Gas permeability of CO₂, N₂ and H₂, and (b) CO₂/N₂ and CO₂/H₂ ideal selectivity in MMMs as a function of non-functionalized UiO66 (open symbols) and UiO66-NH2 loadings (filled symbols).

Fig. S5 (a) Diffusivity and (b) solubility coefficients of CO₂, N₂, CH₄ and C₄H₁₀, and (c) diffusivity and solubility selectivity of CO_2/N_2 , C₄H₁₀/CH₄ in PU MMMs at different UiO66-NH2 loadings.

Fig. S6 Maxwell model prediction (dashed line) for CO_2/N_2 and C_4H_{10}/CH_4 separation. Pure permeability of UiO66-NH2 for each gas is predicted using the experimental data at low loadings (P_{N2} =30 barrer, P_{CH4} =37 barrer, P_{CO2} =2442 barrer , P_{C4H10} =8903 barrer). Pure gas permeability of the neat PU membrane and UiO66-NH2 particles are then used to predict the gas permeability of MMMs at different loadings (blue stars). C_4H_{10}/CH_4 separation properties of PUiON membranes at different loadings (open dark pink square) are well predicted by the model at low filler concentrations. CO_2/N_2 separation properties of PUiON membranes at different loadings (open black circle) are almost matched with the Maxwell model data points (bule stars).

Table S1: The HBI values of the membranes calculated from FTIR spectra

Samples	PU	PU-UiON2.5	PU-UiON5	PU-UiON10	PU-UiON20	PU-UiON30
HBI values	1.1	2.0	2.3	2.3	2.7	2.9

Table 2: Gas permeability and ideal selectivity in the PU/UiO66-NH2 MMMs at 4bar and 25°C. The butane permeability was measured at 1bar. The mixed gas data for C4H10/CH4 (50/50 vol.%) gas mixture are reported in parentheses.

Samples -		Pe	ermeability (ba	Selectivity				
	CH_4	C_2H_6	C_3H_8	C_3H_6	C_4H_{10}	C ₄ H ₁₀ /CH ₄	C_3H_8/CH_4	C_2H_6/CH_4
PU	8.3±0.7 (4.6)	21.6±1.3	63.8±3.2	161.4±8.5	343.6±24.0 (131.9)	41.4±4.5 (28.5)	7.7±0.8	2.6±0.3
PU-UiON2.5	8.6±0.7	23.1±1.2	69.0±2.9	180.2±9.4	392.5±25.5	45.6±4.8	8.0±0.7	2.7±0.3
PU-UiON5	9.6±0.8 (5.1)	27.5±1.4	87.5±5.2	215.6±13.1	490.3±34.8 (193.1)	51.1±5.6 (38.0)	9.1±0.9	2.9±0.3
PU-UiON10	9.4±0.8	30.0±2.1	91.2±6.4	238.6±15.3	578.0±35.8	61.5±6.5	9.7±1.1	3.2±0.4
PU-UiON20	9.0±0.7 (5.2)	30.5±1.9	90.2±5.6	245.0±14.0	613.6±36.2 (266.0)	68.2±6.7 (51.1)	10.0±1.1	3.4±0.4
PU-UiON30	7.8±0.5	26.5±1.4	84.7±5.5	231.9±15.1	563.0±29.8	72.2±6.0	10.9±1.0	3.4±0.3

Table 3: Gas permeability and ideal selectivity of the PU/UiO66-NH2 MMMs at 4bar and 25°C. The mixed gas data for CO_2/N_2 (50/50 vol.%) and CO_2/H_2 (50/50 vol.%) gas mixtures are reported in parentheses.

Consultan	Permeability (barrer)						Selectivity		
Samples	CO ₂	H ₂	O ₂	N ₂	CH ₄	CO ₂ /H ₂	CO_2/N_2	CO₂/CH₄	
PU	129.1±9.0 (73.8)	15.8±1.1 (11.3)	10.1±0.8	3.0±0.2 (2.4)	8.3±0.7	8.2±0.8 (6.5)	43.0±4.3 (30.7)	15.6±1.7	
PU-UiON2.5	138.0±10.3	15.8±1.2	9.8±0.8	2.9±0.2	8.6±0.7	8.7±0.9	47.6±5.0	16.0±1.8	
PU-UiON5	150.2±11.7 (105.5)	15.7±1.2 (12.0)	9.4±0.6	2.8±0.2 (2.3)	9.6±0.8	9.6±1.0 (8.8)	53.6±5.9 (45.3)	15.6±1.8	
PU-UiON10	166.4±13.3	15.2±1.1	8.8±0.7	2.7±0.2	9.4±0.8	10.9±1.2	61.6±7.0	17.7±2.1	
PU-UiON20	163.0±13.2 (124.1)	14.8±1.2 (12.8)	7.6±0.5	2.3±0.2 (2.0)	9.0±0.7	11.0±1.3 (9.7)	70.9±8.1 (62.6)	18.1±2.0	
PU-UiON30	140.6±9.5	13.2±1.0	6.5±0.3	1.9±0.1	7.8±0.5	10.7±1.0	72.3±7.1	18.0±1.7	

d⊔			
	D _k	T _b	ε/k
4.00	3.30	195.0	190.0
3.43	3.46	90.2	113.0
3.68	3.64	77.4	91.5
3.82	3.80	111.7	137.0
4.42	-	184.5	230.0
4.68	4.50	225.5	303.0
5.06	4.30	231.1	254.0
5.34	4.30	272.7	310.0
	4.00 3.43 3.68 3.82 4.42 4.68 5.06 5.34	4.00 3.30 3.43 3.46 3.68 3.64 3.82 3.80 4.42 - 4.68 4.50 5.06 4.30 5.34 4.30	4.003.30195.03.433.4690.23.683.6477.43.823.80111.74.42-184.54.684.50225.55.064.30231.15.344.30272.7

Table S4: Molecular specification of penetrant gases ²

Table S5: N₂ permeability of the pure PU and PUiON10 and PUiON20 MMMs before and after C₄H₁₀ permeation test at 1 bar

	N ₂ permeability (barrer)				C_4H_{10}/N_2 selectivity			
samples	Pure PU	PUiON10	PUiON20	Pure P	U PUiON10	PUiON20		
Before	3.0	2.7	2.3	114.5	214.1	266.8		
After	3.8	2.8	2.2	90.4	209.4	281.2		

- 1. A. P. Isfahani, B. Ghalei, K. Wakimoto, R. Bagheri, E. Sivaniah and M. Sadeghi, *J. Mater. Chem. A*, 2016, **4**, 17431-17439.
- 2. K. Tanaka, A. Taguchi, J. Hao, H. Kita and K. Okamoto, J. Membr. Sci., 1996, **121**, 197-207.