Supplementary information for

Large-scale MoS₂ thin films with chemically formed holey structure for enhanced Seebeck thermopower and their anisotropic properties

Min-Sung Kang ^{a,*}, Soo-Young Kang ^{a,*}, ,Won-Yong Lee^{a,*}, No-Won Park ^a, Ki Chang Kown^b, Seokhoon Choi^b, Gil-Sung Kim^a, Jungtae Nam^{c,d}, Keun Soo Kim^c, Eiji Saitoh^{e,f,g}, Ho Won Jang^b, and Sang-Kwon Lee^{a,e^{**}}

^a Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea

- ^b Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- ^c Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea ^d Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju 55324, Republic of Korea
- ^e Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

^fWPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ^gDepartment of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan

*These authors contributed equally to this work

**Address correspondence to sangkwonlee@cau.ac.kr

1. CVD-grown TMDC films transfer method (PMMA-assisted wet transfer)

In general, it is very difficult to transfer CVD-grown TMDC material such as MoS₂, WSe₂, and WS_2 onto bare SiO_2/Si substrate without etching the bottom SiO_x layer. Therefore, we used the conventional PMMA-assisted wet chemical etching method. First, a thin layer of PMMA (950 K A4) was spin-coated on the CVD-grown MoS₂ film, and the sample was placed on a hot plate at 120 °C for 2 min. The sample was then floated in 5% HF (aq) for 1 min, in which the Si substrate sank owing to etching of SiO_x, which left the PMMA/MoS₂ layers to float on top of the HF solution. Then, the PMMA-coated MoS₂ film was washed with de-ionized water, transferred to target substrates such as SiO₂/Si and Cu/SiO₂/Si layers depending on the in-plane and cross-plane Seebeck coefficient measurements, and dried in ambient conditions for 1 h. For good adhesion to the substrate, further baking was performed at 120 °C for 2 min. Finally, the PMMA layer was removed using warm acetone, followed by rinsing with isopropyl alcohol. The transferred sample was loaded into a furnace to anneal at 250 °C for 2 h to further remove polymer residue. For the Seebeck coefficient measurements of the samples, additional Cu metal layers were deposited on the transferred MoS₂/SiO₂/Si and MoS₂/Cu/SiO₂/Si substrates by radio-frequency sputtering at room temperature. The same method was used for WSe2 and WS2 films.

2. AFM measurement of WSe₂ and WS₂ thin films

Fig. S1. (a) and (c) AFM mapping images of WSe₂ and WS₂ thin films. (b) and (d) Corresponding AFM height profiles (white lines, A–B and C–D) in (a) and (c). The average thicknesses of the WSe₂ and WS₂ thin films were \sim 14 and \sim 8 nm, respectively.

3. Power factors for CVD-grown TMDC films

Fig. S2a shows the in- and cross-plane power factors $(PF = S^2 \sigma)$ of CVD-grown MoS₂ films at

300 K with an anisotropic ratio $\left(\frac{PF_{\parallel}}{PF_{\perp}}\right)$ of the power factor. The PF_{\parallel} and PF_{\perp} of the MoS₂ films were determined to be ~432.6 and ~1.8 × 10⁻⁶ μ W/m·K², respectively, with an extremely large anisotropic ratio of ~2.4 × 10⁸ at 300 K. Fig. S2b shows the cross-plane power factors (PF_{\perp}) of MoS₂, WSe₂, and WS₂ films at 300 K measured as ~1.8 × 10⁻⁶, ~2.8 × 10⁻⁷, and ~1.9 × 10⁻⁷ μ W/m·K².

Fig. S2. (a) In- and cross-plane power factors $(PF_{\parallel} \text{ and } PF_{\perp})$ of CVD-grown MoS₂ films with power factor anisotropy. (b) Cross-plane PF_{\perp} of MoS₂, WSe₂, and WS₂ films at 300 K.

4. Thermoelectric characteristics of various TMDC materials from literatures

Materials	Thickness	σ ₁ [S/m]	σ_{\perp} (S/m)	S [uV/K] @ 300 K	Ref
MoS ₂	1 – 2 layers	-	-	$420 \sim 1 \ x \ 10^5$	[S1 – S3]
MoS_2	Thin film	17~28.3	-	80~ 93.5	[84 – 85]
MoS_2	bulk	0.2~1.7	-	100 ~ 150	[S6]
MoSe _{2.1}	bulk	$8 imes 10^{-6}$	3×10^{-6}	~650	[S7]
WSe ₂	bulk	0.001~0.19	-	$783 \sim 900$	[<u>88 – </u> 89]
WS_2	Thin film	$10 \sim 1 \times 10^{3}$	9	75~ 700.78	[S10 - S12]
WS _{2-x} Se _x	Thin film	$0.021 \sim 40$	-	300~945	[S13 – S14]
MoS ₂	Thin film	~786	~1 × 10-4	115 ~ 742	This work

Table S1. The comparison of thermoelectric performance of MoS_2 in our work with the thermoelectric performances of TMDCs reported in previous literatures

References

- S1. M. Kayyalha, J. Maassen, M. Lundstrom, L. Shi and Y. P. Chen, J. Appl. Phys., 2016, 120, 134305.
- S2. M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele and A. Castellanos-Gomez, *Nano Lett.*, 2013, **13**, 358-363.
- S3. J. Wu, H. Schmidt, K. K. Amara, X. Xu, G. Eda and B. Özyilmaz, *Nano Lett.*, 2014, **14**, 2730-2734.
- S4. X. Li, T. Wang, F. Jiang, J. Liu, P. Liu, G. Liu, J. Xu, C. Liu and Q. Jiang, *Journal of Alloys and Compounds*, 2019, **781**, 744-750.
- S5. T. Wang, C. Liu, J. Xu, Z. Zhu, E. Liu, Y. Hu, C. Li and F. Jiang, *Nanotechnology*, 2016, 27, 285703.
- S6. S. Kong, T. Wu, W. Zhuang, P. Jiang and X. Bao, *The Journal of Physical Chemistry B*, 2018, **122**, 713-720.
- S7. L. Ruan, H. Zhao, D. Li, S. Jin, S. Li, L. Gu and J. Liang, *Journal of Electronic Materials*, 2016, **45**, 2926-2934.
- S8. W. T. Hicks, Journal of The Electrochemical Society, 1964, 111, 1058.
- S9. Y. Liu, J. Liu, X. Tan, Y. Li, R. Liu, Y. Lin and C. Nan, *Journal of the American Ceramic Society*, 2017, **100**, 5528-5535.
- S10. J. Y. Oh, J. H. Lee, S. W. Han, S. S. Chae, E. J. Bae, Y. H. Kang, W. J. Choi, S. Y. Cho, J.-O. Lee, H. K. Baik and T. I. Lee, *Energ Environ Sci*, 2016, 9, 1696-1705.
- S11. H. Kawai, M. Sugahara, R. Okada, Y. Maniwa, Y. Yomogida and K. Yanagi, *Applied Physics Express*, 2016, **10**, 015001.
- S12. J. H. Kim, S. Yu, S. W. Lee, S. Y. Lee, K. S. Kim, Y. A. Kim and C. M. Yang, *Crystals*, 2020, 10, 140.
- S13. G. K. Solanki, D. N. Gujarathi, M. P. Deshpande, D. Lakshminarayana and M. K. Agarwal, *Crystal Research and Technology*, 2008, **43**, 179-185.
- S14. G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, A. Y. Ledneva, V. A. Kuznetsov, M. K. Han, S. J. Kim and V. E. Fedorov, 2016.