Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

# **Supporting Information**

# $VS_4$ with chain crystal structure used as an intercalation cathode for an aqueous Zn-ion battery

*Qiancheng Zhu<sup>a</sup>, Qin Xiao<sup>a</sup>, Bowen Zhang<sup>a</sup>, Zhengcong, Yan<sup>a</sup> Xi Liu<sup>a</sup>, Shuo Chen<sup>\*b</sup>, Zhifeng Ren<sup>\*b</sup> and Ying Yu<sup>\*a</sup>* 

<sup>a</sup> Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
<sup>b</sup> Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX 77204, USA
\*Corresponding authors. Email: <u>yuying01@mail.ccnu.edu.cn</u> (Y.Y); <u>schen34@uh.edu</u> (S. C.); and <u>zren@uh.edu</u> (Z. F. R.).

#### **Experimental Section**

## Synthesis of VS<sub>4</sub> nanoparticles:

In a typical process, 0.35 g of ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>) was added into 30 mL of deionized water. Then the suspension was heated to 60 °C to form a clear paleyellow solution. Then, 30 mL of 0.6 M thioacetamide (TAA) dissolved in ethylene glycol (EG) was added in the above solution. Finally, the homogeneous solution was transferred into a Teflon-lined stainless steel autoclave with a capacity of 100 mL. The autoclave was heated and maintained at 160 °C for 16 h. The precipitate product was rinsed with a centrifuge by deionized water and ethanol for several times and dried in a vacuum oven at 60 °C.

## Materials Characterization:

The morphology, microstructure, and crystal phase composition of the prepared samples were characterized by field-emission scanning electron microscopy (FE-SEM, JSM-6700F), transmission electron microscopy (TEM, JEM-2100F), and X-ray diffraction (XRD, PANalytical X'PertPRO), respectively. X-ray photoelectron spectroscopy (VG Multiab-2000) using a PHI Quantum 2000 XPS system with a monochromatic Al K $\alpha$  source and charge neutralizer were performed to analyze the valence and bonding information of V, S and Zn elements. The element contents were determined by the energy dispersive spectroscopy (EDS, EDAX genesis 7000).

## Electrochemical Characterization:

All the electrochemical measurements were conducted by employing an electrochemical workstation (CHI660E). The VS<sub>4</sub>-Zn battery was assembled in a pouch cell with a separator (NKK) in 1 M ZnSO<sub>4</sub> solution. The cathode VS<sub>4</sub> was connected as a working electrode, and the Zn anode electrode as both reference and counter electrodes.

#### DFT calculation:

The energies of VS<sub>4</sub> and the structures of  $Zn_xVS_4$  with different  $Zn^{2+}$  insertion content x (from 0 to 1) were computed using DFT with implementation in the Vienna ab Initio Simulation Package (VASP). The plane wave cutoff energy was fixed at 400 eV. All of the structures were fully optimized and relaxed to ground state. The self-consistent field convergence criterion was set to be  $10^{-4}$  The pristine VS<sub>4</sub> has lattice parameters of  $\alpha=90^{\circ}$ ,  $\beta=100.72^{\circ}$ ,  $\gamma=90^{\circ}$ , a=7.44Å, b=12.1664 Å and c = 11.93150 Å. To reduce the influence of geometry changes on the formation energy, the relative formation energy per VS<sub>4</sub> unit was defined as

$$\Delta E_F = E(Zn_xVS_4) - E(Zn_{x-1/n}VS_4) - (E(Zn_{1/n}VS_4) - E(VS_4))$$
  
where  $E(ZnxVS_4)$  is the lowest

energy state with  $x \operatorname{Zn}^{2+}$  ions (x = 1/n to 1) inserted into the VS<sub>4</sub>, and  $E(VS_4)$  is the energy of pristine VS<sub>4</sub>. Since we carried out DFT calculations based on the supercell of V<sub>8</sub>S<sub>32</sub>, the value of n, which represents the number of VS<sub>4</sub> cell, is 8.

| (h, k, l) VS <sub>2</sub> | (h, k, l) VS <sub>4</sub> |
|---------------------------|---------------------------|
| (001), 5.76 Å             | (011), 7.84 Å             |
| (002), 2.88 Å             | (002), 5.95 Å             |
| (100), 2.79 Å             | (110), 5.61 Å             |
| (011), 2.51 Å             | (020), 5.21 Å             |
| (012), 2.00 Å             | (-112), 4.45 Å            |

Table S1. Comparison of the top five lattice spaces for  $VS_2$  and  $VS_4$ .

**Table S2.** Parameters of cell volume and d space with different x value.

| x value | Cell volume Å <sup>3</sup> | d space Å  |
|---------|----------------------------|------------|
| 0       | 1061.2598                  | 5.9662     |
| 0.125   | 1187.4092                  | 6.5261     |
| 0.25    | 1193.6443                  | 6.6212     |
| 0.375   | 1199.66                    | 6.6690     |
| 0.5     | 1213.23                    | 6.7783     |
| 0.625   | 1226.738                   | 6.7572     |
| 0.75    | 1232.6317                  | 6.8541     |
| 0.875   | 1273.6632                  | 6.9727     |
| 1       | distortion                 | distortion |



Figure S1. SEM image of prepared VS<sub>4</sub> nanoparticles.



Figure S2. (a) Galvanostatic charge and discharge curves of VS<sub>4</sub>-Zn battery at the current density of 1 A  $g^{-1}$ . (b) CV curves of the VS<sub>4</sub>-Zn battery at the scan rate of 0.8 mV s<sup>-1</sup>.



Figure S3. Charge and discharge curves of  $VS_4$  at 0.1 A g<sup>-1</sup>.

In the first step:  $VS_4 + xZn^{2+} + 2xe^- \leftrightarrow Zn_xVS_4$  (x = 0.49) In the second step:  $Zn_xVS_4 + yZn^{2+} + 2ye^- \leftrightarrow Zn_{x+y}VS_4$  (y = 0.54)



**Figure S4.** Zn and V ratio characterized by EDS for the first (a) and second (b) discharge steps.



Figure S5. Zn and V ratio characterized by XPS survey spectrum for discharged VS<sub>4</sub>.

| Materials                                         | electrolyte                                           | Current (mA g <sup>-</sup><br><sup>1</sup> )/capacity (mAh g <sup>-</sup><br><sup>1</sup> ) | Cycle<br>times/capacity<br>retention | Ref.       |
|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|------------|
| VS <sub>4</sub>                                   | 1 M ZnSO <sub>4</sub>                                 | 100 / 310                                                                                   | 500 / 85%                            | (our work) |
|                                                   |                                                       | 250 / 260                                                                                   |                                      |            |
|                                                   |                                                       | 1000 / 209                                                                                  |                                      |            |
|                                                   |                                                       | 2500 / 135                                                                                  |                                      |            |
| $V_2O_5$                                          | 0.5 M AN-                                             | 14.4 / 170                                                                                  | 120 / 97%*                           | 37         |
|                                                   | Zn(TFSI) <sub>2</sub>                                 | 288 / 130                                                                                   |                                      |            |
| $VS_2$                                            | 1 M ZnSO <sub>4</sub>                                 | 50 / 190.3                                                                                  | 200 / 98%                            | 24         |
|                                                   |                                                       | 200 / 145.3                                                                                 |                                      |            |
|                                                   |                                                       | 500 / 136.8                                                                                 |                                      |            |
|                                                   |                                                       | 1000 / 121.5                                                                                |                                      |            |
|                                                   |                                                       | 2000 / 115.5                                                                                |                                      |            |
| $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$                    | 1 M ZnSO <sub>4</sub>                                 | 50 / 200                                                                                    | 300 / 68%                            | 20         |
|                                                   |                                                       | 100 / 166                                                                                   |                                      |            |
|                                                   |                                                       | 500 / 122                                                                                   |                                      |            |
|                                                   |                                                       | 1000 / 84                                                                                   |                                      |            |
|                                                   |                                                       | 2000 / 75                                                                                   |                                      |            |
| LiV <sub>3</sub> O <sub>8</sub>                   | 1 M ZnSO <sub>4</sub>                                 | 16 / 256                                                                                    | 65 / 86%*                            | 38         |
|                                                   |                                                       | 266 / 148                                                                                   |                                      |            |
|                                                   |                                                       | 533 / 79                                                                                    |                                      |            |
|                                                   |                                                       | 1066 / 47                                                                                   |                                      |            |
| Na <sub>1.1</sub> V <sub>3</sub> O <sub>7.9</sub> | 1 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 300 / 220                                                                                   | 500 / 84.8%                          | 40         |
|                                                   |                                                       | 1000 / 84.8                                                                                 |                                      |            |
| $K_2V_8O_{21}$                                    | 2 M ZnSO <sub>4</sub>                                 | 300 / 247                                                                                   | 300 / 83%                            | 39         |
| $Zn_{0.25}V_2O_5{\cdot}nH_2O$                     | 1 M ZnSO <sub>4</sub>                                 | 300 / 282                                                                                   | 1000 / 81%                           | 8          |
| $Na_3V_2(PO_4)_3$                                 | 0.5 M                                                 | 50 / 97                                                                                     | 100 / 74%                            | 21         |
|                                                   | Zn(CH <sub>3</sub> COO) <sub>2</sub>                  | 1000 / 58                                                                                   |                                      |            |

**Table S3.** Capacity and cycle performance comparison of our work with the other related reports.

\* Estimated value