Electronic Supplementary Information (ESI)

Enhancing Average Thermoelectric Figure of Merit of Elemental Te by Suppressing the Grain Boundary Scattering

Yehao Wu, Feng Liu, Qi Zhang, Tiejun Zhu,* Kaiyang Xia and Xinbing Zhao*

State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China Email: zhutj@zju.edu.cn; zhaoxb@zju.edu.cn

Fig. S1 (a) Bulk XRD patterns for $Te_{0.98}As_{0.02}$ samples. (b) Bulk XRD patterns with a logarithmic intensity axis for $Te_{0.98}As_{0.02}$ samples, in which the impurity peaks are more readily to be recognized.

Fig. S2 Temperature dependences of (a) Seebeck coefficient, (b) carrier concentration, (c) carrier mobility and (d) device zT for Te_{0.98}As_{0.02} samples. According to (a), the intrinsic conduction is not

obvious between 300 and 600 K for all Te samples, hence the carrier mobility in (c) is calculated by the formula $\sigma/n_{\rm H}e$, where $n_{\rm H}$ is assumed to be constant. The cold-side temperature in (d) is fixed at 300 K.

Fig. S3 Temperature dependences of (a) electrical conductivity and (b) thermal conductivity for HP and ZM $Te_{0.98}As_{0.02}$ samples.

Fig. S4 (a) Bulk XRD patterns for $Te_{0.98-x}Se_xAs_{0.02}$ samples. (b) Bulk XRD patterns with a logarithmic intensity axis for $Te_{0.98-x}Se_xAs_{0.02}$ samples, in which the impurity peaks are more readily to be recognized.

Fig. S5 Temperature dependences of (a) carrier concentration, (b) Seebeck coefficient, (c) electrical conductivity, (d) carrier mobility and (e) thermal conductivity for $Te_{0.98-x}Se_xAs_{0.02}$ samples. (f) Phonon frequency dependence of spectral lattice thermal conductivity at 300 K for $Te_{0.9}Se_{0.08}As_{0.02}$ alloys. The inset is the calculated disorder parameter Γ^1 as a function of Se content for $Te_{0.98-x}Se_xAs_{0.02}$ samples. Γ consists of contribution from mass fluctuations Γ_M and strain field fluctuations Γ_S : $\Gamma = \Gamma_M + \Gamma_S$.

Fig. S6 (a) zT as a function of Se content for $\text{Te}_{0.98-x}\text{Se}_x\text{As}_{0.02}$ samples (300 and 600 K). (b) Temperature dependence of device zT for $\text{Te}_{0.98-x}\text{Se}_x\text{As}_{0.02}$ samples. The cold-side temperature is fixed at 300 K.

Calculation of lattice thermal conductivity based on the Debye-Callaway model

In the Debye-Callaway model,²⁻⁴ the lattice thermal conductivity κ_L can be calculated according to the following equations:

$$\kappa_{L} = \frac{k_{B}}{2\pi^{2}\nu_{s}} \left(\frac{k_{B}T}{\hbar}\right)^{3} \int_{0}^{\theta_{D}/T} \frac{x^{4}e^{x}}{\tau_{tot}^{-1}(e^{x}-1)^{2}} dx, x = \frac{\hbar\omega}{k_{B}T}$$

$$\tau_{tot}^{-1} = \tau_{B}^{-1} + \tau_{P}^{-1} + \tau_{U}^{-1}$$

$$= \frac{\nu_{s}}{d} + A\omega^{4} + B\omega^{2}Texp\left(-\frac{\theta_{D}}{3T}\right)$$
(S1)
(S2)

where $k_{\rm B}$ is the Boltzmann constant, \hbar is the reduced Planck's constant, $v_{\rm s}$ is the average sound velocity, *T* is the absolute temperature, $\theta_{\rm D}$ is the Debye temperature, $\tau_{\rm tot}$ is the total relaxation time, ω is the phonon frequency, *d* is the grain size and roughly taken as the initial powder median size. $v_{\rm s}/d$ represents the grain boundary scattering. *A*, *B* are the pre-exponential factors for point defects scattering and Umklapp process scattering, respectively. To be noted, *B* is obtained by fitting the temperature dependence of $\kappa_{\rm L}$ for the HP-303 μ m Te_{0.98}As_{0.02} sample. The calculating parameters used in the Debye-Callaway model are summarized in Table S1. Other parameters obtained from our previous work⁵ are listed in Table S2. More calculation details can also be found in our previous work.⁵

 Table S1 The calculating parameters used in the Debye-Callaway model. Due to the small atom

 mass and tiny doping content, the As content in Te is hard to be detected.

Nominal	d	Actual	v/d	А	В
composition	(<i>µ</i> m)	composition	$(10^7 s^{-1})$	$(10^{-41}s^3)$	(10 ⁻¹⁷ sK ⁻¹)
Te _{0.98} As _{0.02}	9	Te	17.6	0	2.2
$Te_{0.98}As_{0.02}$	15	Te	10.6	0	2.2
$Te_{0.98}As_{0.02}$	26	Te	6.1	0	2.2
$Te_{0.98}As_{0.02}$	44	Te	3.6	0	2.2
$Te_{0.98}As_{0.02}$	127	Te	1.3	0	2.2
$Te_{0.98}As_{0.02}$	303	Te	0.5	0	2.2
$Te_{0.96}Se_{0.02}As_{0.0}$	136	Te _{0.993} Se _{0.007}	1.2	0.7	2.2
2					
$Te_{0.95}Se_{0.03}As_{0.0}$	141	$Te_{0.990}Se_{0.010}$	1.1	1.0	2.2
2					
$Te_{0.94}Se_{0.04}As_{0.0}$	142	$Te_{0.986}Se_{0.014}$	1.1	1.4	2.2
2					
$Te_{0.92}Se_{0.06}As_{0.0}$	137	$Te_{0.977}Se_{0.023}$	1.2	2.1	2.2

2					
$Te_{0.9}Se_{0.08}As_{0.02}$	122	$Te_{0.966}Se_{0.034}$	1.3	3.2	2.2

Table S2 The parameters used to calculate the lattice thermal conductivity, taken from our previous work.⁵

Parameters	Sign [unit]	Value	
Average sound velocity	$\nu_{\rm s} [{\rm m.s^{-1}}]$	1588	
Atomic volume	<i>V</i> [m ³]	3.38×10 ⁻²⁹	
Debye temperature	$\theta_{\rm D}[{ m K}]$	146	
Grüneisen parameter	γ	1.57	
Poisson ratio	r	0.26	
Density of mass	ho [kg.m ⁻³]	5.89×10 ³	

References

- [S1] J. Yang, G. P. Meisner and L. Chen, Appl. Phys. Lett., 2004, 85, 1140-1142.
- [S2] J. Callaway and H. C. von Baeyer, Phys. Rev., 1960, 120, 1149-1154.
- [S3] E. F. Steigmeier and B. Abeles, *Phy. Rev.*, 1964, **136**, A1149-A1155.

[S4] T. J. Zhu, C. G. Fu, H. H. Xie, Y. T. Liu, B. Feng, J. Xie and X. B. Zhao, *Europhys. Lett.*, 2013, **104**, 46003. [S5] Y. H. Wu, Q. Zhang, F. Liu, T. Fang, T. J. Zhu and X. B. Zhao, Adv. Electron. Mater., 2020, 2000038.