Perovskite-Sensitized β-Ga₂O₃ Nanorod Arrays for Highly Selective and Sensitive NO₂ Detection at High Temperature

Bo Zhang, ^{a,} + Hui-Jan Lin, ^{a,} + Haiyong Gao, ^a Xingxu Lu, ^a Chang-Yong Nam, ^b Pu-Xian Gao^{*, a}

a. Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States

b. Centre for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States

† Equal contribution authors

* E-mail: puxian.gao@uconn.edu

Figure S1. The variation of NO and NO₂ concentration versus temperature based on FTIR spectra. Initial gas parameter is 200 ppm NO₂ and N₂ as the balance gas while red dots represent the NO₂ and the black dots curve represent the NO.

Figure S2. DRIFT spectra of 500 ppm NO and 1000 ppm O_2 co-adsorption on Ga_2O_3 versus temperature ranging from room temperature to 500 °C.

Figure S3. Temperature-programmed desorption (TPD) spectra collected from room-temperature NO₂-saturated LSCO/Ga₂O₃ and Ga₂O₃ (heating rate: 10 °C/min), where spectra of LSCO/Ga₂O₃ is labeled with red curve and pristine Ga₂O₃ is labeled with black curve.

Figure S4. Schematic diagrams illustrating the formation of charge depletion layer in: (a) N_2 atmosphere, (b) Air atmosphere, and (c) NO_2 atmosphere.

Figure S5. NO₂ gas sensing test results: (a) Normalized sensitivity-time characteristics of pure Ga₂O₃ nanorod array tested at 800 °C with N₂ as background atmosphere and its corresponding NO₂ concentration; (b) Normalized sensitivity-time characteristics of Ga₂O₃/LSCO nanorod arrays tested at 800 °C; (c) Response, (d) Response time and (e) Recovery time versus NO₂ concentrations characteristics of β -Ga₂O₃ and β -Ga₂O₃/LSCO nanorod arrays tested at 800 °C.

Figure S6. NO₂ gas sensing performance of LSCO/ β -Ga₂O₃ nanorod (a) Normalized sensitivity-time oxygen sensing properties of LSCO/ β -Ga₂O₃ nanorod arrays tested at 800 °C with N₂ as background atmosphere and its corresponding O₂ concentration. (b) Sensitivity (c) Response time and (d) Recovery time of LSCO/ β -Ga₂O₃/ nanorod array upon exposure to 300 ppm of NO₂ and O₂ tested at 800 °C.