High performance multicomponent bifunctional catalyst for overall water splitting

Ranjith Bose,^[a,b,*] Vasanth Rajendran Jothi,^[c] K. Karuppasamy,^[d] Akram Alfantazi ^[a,b,*] and Sung Chul Yi ^[c,e,*]

^[a]Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.

^[b]Nuclear Technology Center, Khalifa University, Abu Dhabi, United Arab Emirates.

^[c] Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seong dong-

gu, Seoul 04763, Republic of Korea.

^[d]Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620,

Republic of Korea.

^[e] Department of Hydrogen and Fuel cell technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

Corresponding author : Dr. Ranjith Bose, Prof. Akram Alfantazi, and Prof. Sung Chul Yi E-mail id : <u>ranjith.bose@ku.ac.ae</u>, <u>akram.alfantazi@ku.ac.ae</u> & <u>scyi@hanyang.ac.kr</u>

Figure S1. SEM images of (A,B) CoS_x/NF , and (C,D) NiFeOH/NF

Figure S2. Polarization curve of 3 freshly prepared samples of NiFeOH/CoS_x and NiFeOH, evaluated for reliability.

Samples	$NiFeOH/CoS_x$	NiFeOH
1	1.45032	1.47047
2	1.44539	1.47577
3	1.44083	1.46301
Average	1.44551	1.46975
Standard deviation	0.00475	0.00641

Figure S3. Mass normalized with current density of as-prepared catalysts.

Figure S4. Polarization curves of a NiFeOH/CoS_x/NF electrode in 1 M KOH solution with various percentages of iR drop compensation.

Figure S5. Tafel plots of NiFeOH/CoS_x/NF, CoS_x /NF, and NiFeOH/NF derived from the HER polarization curves.

Figure S6. (A,B) HR-TEM images of post HER sample of NiFeOH/CoS_x/NF, (C-G) EDX mapping of Ni, Fe, Co, S and O elements for NiFeOH/CoS_x/NF. Scale bar -250 nm

Figure S7. XRD pattern of NiFeOH/CoS_x/NF samples before and after electrocatalytic activity. (Asterisk symbol represented at the peaks of the nickel foam)

The X-ray diffraction (XRD) pattern of CoS_x/NF , and NiFeOH/NF were showed in **Figure S8**. For the CoS_x films, only observed in NF substrate peak, without detection of any CoS_x diffraction peaks. Such an absence of XRD peaks away from those due to the substrate indicates the lack of significant long-range crystalline order, consistent with the previous studies which report on the growth of amorphous CoS_x on FTO substrate via electrodeposition.^[1] The XRD pattern of NiFeOH/NF showed a strong diffraction peaks of NF and a three minor peaks at 20 = 23.72, 35.46, and 39.84 from (020), (101), and (121) planes of Fe(OH)₃ (ICPDD card No: 00-046-1436) and FeO(OH) (ICPDD card No: 01-081-0463) respectively.

Figure S8. XRD pattern of CoS_x/NF , and NiFeOH/NF samples. (Asterisk symbol represented at the peaks of the nickel foam)

Figure S9. Typical energy-dispersive X-ray spectroscopy (EDX) spectra on the as-made (A), post-OER (B), and post-HER (C) NiFeOH/CoS_x electrocatalysts.

Figure S10. Raman spectra of post-HER NiFeOH/CoS_x/NF electrode

Figure S11. XPS survey spectra of NiFeOH/CoS_x/NF electrode.

Figure S12. Co 2p spectra of as-prepared NiFeOH/CoS_x and pristine CoS_x

XPS spectra of NiFeOH, and CoS_x were examined and shown in Figure S13 & S14. As shown in Figure S13b for Ni 2p of NiFeOH, which was deconvoluted into two spin-orbit doublets and two shakeup satellites (identified as "Sat."). The peaks located for first doublet at 854.0 and 871.8 eV and the peaks located for second doublet at 855.7 eV and 873.6 eV were ascribed to the Ni²⁺ / Ni³⁺ for Ni(OH)₂/NiOOH, and the corresponding satellite peak, respectively.^[2] Figure S13c shows the Fe 2p spectra of NiFeOH. The peaks located at 713.3 eV and 725.4 eV for Fe $2p_{3/2}$ and Fe $2p_{1/2}$, respectively, which were assigned as the characteristic peaks of Fe³⁺ in FeOOH.^[2] For the O 1s spectra (Figure S13d), the peak at 529.4 eV, 530.5 eV, and 532.5 eV can be attributed to oxide, hydroxide, and adsorbed (physical or chemical) water in Ni & Fe species.^[2,3] The Co 2p region (Figure S14b) for the CoS_x exhibits two main peaks at 782.4 and 798.2 eV that can be described to the +2 oxidation state of Co in CoS_x , which is consistent with previous XPS analysis.^[1,4] Figure S14c show that XPS spectra of S 2p in CoS_x , the S 2p spectra were deconvoluted into two doublets under two constraints: the intensity ratio (1:2) and the binding energy difference (1.18 eV) between the $2p_{1/2}$ and $2p_{3/2}$ peaks, indicative of sulphur in S²⁻ and S₂²⁻ ions. Also, a peak observed at 169.2 eV corresponds to the binding energy of sulphur in sulphate (SO₄²⁻) group.^[4]

Figure S13. XPS spectra of NiFeOH/NF electrode. (a) Survey spectrum, (b) Ni 2p, (c) Fe 2p, (d) O 1s

Figure S14. XPS spectra of CoS_x/NF electrode. (a) Survey spectrum, (b) Co 2p, (c) S 2p

Figure S15. Double layer capacitance (C_{dl}) measurements for (a,b) CoS_x/NF , (c,d) NiFeOH/NF, (e,f) NiFeOH/CoS_x/NF electrode. CV scans measured at a potential range from 0.90 to 1.00 V vs RHE (no iR correction), where a capacitive current flows, with scan rates, respectively, 20, 40, 60, 80, and 100, mV s⁻¹.

Figure S16. ECSA normalized polarization curves for as-prepared catalysts

Faradic efficiency calculation

The faradaic efficiency was calculated from the previous reported works:^[3b]

Based on the amount of water displaced by the H_2/O_2 bubbles from the headspace of the inverted burette, the respective gas volumes are quantified. Ideal gas approximation was used at different time intervals to determine the moles of gas. From the total charge passed through the cell at various time intervals, the Faradic efficiency was calculated by the equation,

Faradaic efficiecny (FE) =
$$\frac{n \times F \times m}{Q}$$

Where, n = number of electrons required for one molecule of H₂ or O₂, F = Faraday's constant, 96485 mol⁻¹, m = moles of gas evolved and Q is the total charge passed; Q = i.t.

$$FE \% = rac{Experimental}{Theroretical} imes 100$$

Figure S17. CV curves (15 cycles) during the electrodeposition of Co-S films on NF substrate at a scan rate of 5 mV s⁻¹.

Table S1. Comparison of the OER activity of NiFeOH/CoS_x/NF electrocatalysts in alkaline medium with some recently reported electrocatalysts

Catalyst	η _j (mV)	j (mA cm ⁻²)	Tafel slope (mV/dec)	Reference	
NiFeOH/CoS /NF	209	50	30 1	This work	
	234	100	37.1		
FeCoNi-ATNs	225	10	10.2	Adv. Energy Mater. 2019, 9,	
(H)/NF	340	50	40.2	1901312	
Ultrathin Ni-Fe LDHS	210	10	30	ACS Catal. 2019, 9, 6027.	
Cr-doped	240	10			
FeNi–P/NCN	290ª	50	72.36	Adv. Mater. 2019, 31, 1900178	
	261	10		ACR C-4-1 2010 0 2050	
Fe _{0.5} C0 _{0.5} P	281ª	50		ACS Catal. 2019, 9, 2956	
	243	10		Adv. Funct. Mater. 2019, 29,	
$N1Co_2S_4/NF$	320ª	50	54.9	1807031.	
Ni-Fe-LDH-MoS ₂	250	10	45	ACS Energy Lett 2018 3 952	
Ni–Al- LDH–MoS ₂	310	10	56	100 Energy Lett. 2010, 5, 752.	
Ni Co /CD	220	10	91.0	ACS Nano 2018, 12, 6245.	
NI4Ce1/CP	278 ^a	50	01.9		
Mo ₅₁ Ni ₄₀ Fe ₉ nanobelts	257	10	51	ACS catal. 2019, 9, 1013.	
Porous monolayer	230	10	17	Adv. Energy. Mater. 2019, 9	
NiFe-LDH	280ª	50	4/	1900881	
Fe(PO ₃) ₂ -derived oxyhydroxide/NF	214ª	50	51.9	Proc. Natl. Acad. Sci. USA. 2017. 114, 5607.	
V-doped CoNiB/NF	370	100	NA	Adv. Energy Mater. 2019, 9, 1803799	
Ni-Fe LDH/rGO	229ª	50	39	Angew. Chem. Int. Ed. 2014, 53, 7584.	
FeCoNi-ATNs/NF	295	10	52.7	Adv. Energy Mater. 2019, 9, 1901312	
Gelled FeCoW	234ª	50	37±2	Science 2016, 352, 333.	
Au@CoFeO _x /GC	328 ± 3	10	58	Nano Lett. 2017, 17, 6040	
NiFe-DH/NF	323	10	77	ACS Energy Lett. 2017, 2, 1035.	
NiFe LDH/Cu	245 ^a	50	77.0	Energy Environ Sei 2017 10 1920	
nanowire arrays	281	100	27.8	Energy Environ. Sci. 2017, 10, 1820.	
Fe Doned & Ni(OU)	219	10	53	ACS Energy Lett 2019 4 622	

	259ª	50				
	215	10				
NiFe hydroxides/NF	263 ^a	50	28	Nat. Commun. 2015, 6, 6616.		
Ni ₃ FeN	280	10	46	Adv. Energy Mater. 2016, 6, 1502585		
	249	20	12.2	ACS Sustainable Chem. Eng. 2019,		
CeO _x /NiFe-OH/NF	270 ^a	50	43.2	7, 16392.		
	250	17.6		Adv. Mater. 2016, 28, 4698.		
CeO ₂ /FeOOH	279 ^a	50	92.3			
CeO ₂ /Co ₃ O ₄ interface nanotubes	265	10	68.1	ACS Catal. 2019, 9, 6484.		
NEE I DII/CNITa	247	10	21	J. Am. Chem. Soc. 2013, 135, 8452		
NIFE LDH/CNIS	272 ^a	50	51			
RuO _{2/} Ni	290	10	85	ACS Energy Lett. 2017, 2, 1035.		
F - N / f	238	10	44.5	ACS Catal. 2017, 7, 2052.		
Fe _x N/graphene foam	278 ^a	50	44.5			
	280	20		Adv. Mater. 2016, 28, 3785.		
Porous MoO ₂ /NF	297	50	NA			
NiCeO _x -Au	271	10	NA	Nat. Energy 2016, 1, 16053		
Co ₄ N nanowires/CC	308 ^a	50	44	Angew. Chem. Int. Ed. 2015, 54, 14710.		
CoNi(OH) _x /Cu foil	313 ^a	50	77	Adv. Energy Mater. 2016, 6, 1501661.		
Ni ₂ P nanoparticle/GC	320 ^a	50	NA	Energy Environ. Sci. 2015, 8, 2347.		
NiFe LDH/MW- graphene	335 ^a	50	38	Science 2016, 353, 1413.		
Porous Ni-P	300	10	()	Energy Engine Sci 2016 0 1246		
nanoplates/GC	350 ^a	50	64	Energy Environ. Sci. 2016, 9, 1246.		
NiFeP/Ni	270	10	59	ACS Energy Lett. 2017, 2, 1035.		
CoFePO/Ni	274	10	51.7	ACS Nano. 2016, 10, 8738.		
Ni _x Fe _{3-x} O ₄ /Ni	225	10	44	ACS Energy Lett. 2018, 3, 1698.		
CoNi(20:1)-P/GC	273	10	45	Energy Environ. Sci. 2017, 10, 893		
Co _{0.85} SelCoP/CFP	240	10	46	Part. Part. Syst. Charact. 2018, 1800135		

a: The value is estimated from the polarization curves shown in the literatures

Table S2. Comparison of the HER activity of NiFeOH/CoS_x/NF electrocatalysts in alkaline medium with some recently reported electrocatalysts

*Electrolyte: 1 M NaOH

Catalyst	η _j (mV)	j (mA cm ⁻²)	Tafel slope (mV/dec)	Reference
NiFeOH/CoS _x /NF	146	10	121.3	This work
Ni-Fe-LDH-MoS ₂	180	10	82	ACS Energy Lett. 2018, 3, 952.
FeCo/CP	149	10	77	ACS Catal. 2017, 7, 469
FeCoNi-ATNs/NF	150	10	107	Adv. Energy Mater. 2019, 9, 1901312
Ni ₅ P ₄ /Nickel foil	150	10	53	Angew. Chem. Int. Ed. 2015, 127, 12538
Cr-doped FeNi– P/NCN	190	10	68.51	Adv. Mater. 2019, 31, 1900178
MoC _x	151	10	59	Nat Commun 2015, 6, 6512.
Co@N-CS/N-	154	10	81	Adv. Energy Mater. 2019, 9, 1803918
HCP@CC (A-S-720)				
NiCo ₂ O ₄ /NF	164	10	107	Adv. Funct. Mater. 2016, 26, 3515.
Co ₁ Mn ₁ CH/NF	180	10	NA	J. Am. Chem. Soc. 2017, 139, 8320
Porous NiSe ₂	184	10	77	Chem. Mater. 2015, 27, 5702-5711.
nanosheets/CP				
Co ₉ S ₈ @MoS ₂ /CNFs	190	10	110	Adv. Mater. 2015, 27,4752
CoSe ₂ /carbon cloth	190	10	85	Adv. Mater. 2016, 28, 7527
FeNi@NC/CNT	202	10	113.7	Angew. Chem. Int. Ed. 2018, 57, 8921
Co _{0.75} Fe _{0.25} @NC	202	10	68	J. Power Sources 2018, 389, 249
Co-MoS ₂ /CC	203	10	158	Energy. Environ. Sci. 2016, 9, 2789
CoP/CC	209	10	129	J. Am. Chem. Soc. 2014, 136, 7587.
NiFe LDHs/NF	210*	10	NA	Science 2014, 345, 1593-1596.
Ni ₂ P	220	10	NA	Energy Environ. Sci. 2015, 8, 2347.
Cu _{0.3} Co _{2.7} P/NC	220	10	122	Adv. Energy. Mater. 2017, 7, 1601555
Ni ₃ S ₂ /NF	223	10	NA	J.Am.Chem.Soc.2015,137,14023

Table S3: Chemical states and peak position of NiFeOH/CoS $_x$ catalyst

Sample	Elements	Chemical state	Binding energy (eV)
	Со	$Co^{3+} 2p_{3/2}$	779.2
		$Co^{2+} 2p_{3/2}$	780.7
		$Co^{3+} 2p_{1/2}$	794.8
		$Co^{2+} 2p_{1/2}$	796.2
	л.	$Ni^{2+} 2p_{3/2}$	855.8
	N1	$Ni^{2+} 2p_{1/2}$	873.4
NiFeOH/CoS _x	Fe	$Fe^{3+} 2p_{3/2}$	713.4
(as-prepared		$Fe^{3+}2p_{1/2}$	726.3
catalyst)	О	OI	529.9
		OII	531.3
		OIII	532.6
		O ^{IV}	533.4
	S	S 2p _{3/2}	162.0
		S 2p _{1/2}	163.2
		$S^{6+} 2p_{3/2}$	168.1
		$S^{6+} 2p_{1/2}$	170.3

Table S4. Comparison of TOFs of NiFeOH/CoS $_x$ /NF electrocatalysts in alkaline medium with other reported works.

Electrocatalysts	TOF	Reference	
NiFeOH/CoS _x	0.52 s ⁻¹ at $\eta = 200 \text{ mV}$	This work	
NiCeO _x -Au	0.0795 s^{-1} at $\eta = 280 \text{ mV}$	Nat. Energy 2016, 1, 16053	
V-CoNiB	0.09 s^{-1} at $\eta = 400 \text{ mV}$	Adv. Energy Mater. 2019, 9, 1803799	
Fe(PO ₃) ₂ /Ni ₂ P	$0.12 \text{ s}^{-1} \text{ at } \eta = 300 \text{ mV}$	Proc. Natl. Acad. Sci. USA. 2017. 114, 5607.	
Pt/C	0.0053 s^{-1} at $\eta = 350 \text{ mV}$	J. Am. Chem. Soc. 2014, 136, 7077	
Ni, Fe (OOH)	0.073 s ⁻¹ at η = 300 mV	Energy Environ Sci. 2018, 11, 2858	
Ru ⁰ /CeO ₂	0.004 s ⁻¹ at η = 350 mV	J. Colloid Interface Sci. 2019, 534, 704	
CeO ₂ /Co ₃ O ₄	0.029 s^{-1} at $\eta = 340 \text{ mV}$	ACS Catal. 2019, 9, 6484–6490	
CeO _x /NiFeOH	0.0684 s^{-1} at $\eta = 280 \text{ mV}$	ACS Sustainable Chem. Eng. 2019, 7 16392	
NiCeO _x –GC	0.0052 s^{-1} at $\eta = 280 \text{ mV}$	Nat. Energy 2016, 1, 16053	
RuO ₂	0.0104 s^{-1} at $\eta = 350 \text{ mV}$	J. Am. Chem. Soc. 2014, 136, 7077	
ү-СоООН	0.09 s^{-1} at $\eta = 300 \text{ mV}$	J. Am. Chem. Soc. 2013, 135, 8452	
Fe-Co ₃ O ₄ @Fe- Co-Bi/CC	$0.14 \text{ s}^{-1} \text{ at } \eta = 400 \text{ mV}$	J. Mater. Chem. A 2017, 5, 6388	

Table S5. Comparison of overall water splitting performance of NiFeOH/CoS $_x$ /NF electrodewith other reported bifunctional electrodes tested under similar conditions.

Electrocatalysts	Substrate	η _{10, overall} (V)	Electrolyte	Reference
NiFeOH/CoS _x /NF	Nickel foam	1.563	1.0 M KOH	This work
PO-Ni/Ni-NCNFs	Carbon nanofibers	1.69	1.0 M KOH	Nano Energy, 2018, 51, 286.
NiFe LDH/NF	Nickel foam	1.70	1.0 M KOH	Science 2014, 345, 1593.
NiMo/NiMoO@NC	Nickel foam	1.57	1.0 M KOH	Small 2017, 13, 1702018
CoS _x /Ni ₃ S ₂ @NF	Nickel foam	1.572	1.0 M KOH	ACS Appl. Mater. Interfaces 2018, 10, 27712.
NiFe@NC@NF	Nickel foam	1.58	1.0 M KOH	ACS Catal. 2016, 6, 580
FeNi(BDC)(DMF,F)/NF	Nickel foam	1.58	1.0 M KOH	Applied Catalysis B: Environmental, 2019, 258, 118023
NiCoP/SCW	Scrapped Copper wire	1.59	1.0 M KOH	Adv. Energy Mater. 2018, 8, 1802615.
FeCoP UNSAs/NF	Nickel foam	1.60	1.0 M KOH	Nano energy 2017, 41, 583.
NiCo ₂ S ₄ NW/NF	Nickel foam	1.63	1.0 M KOH	Adv. Funct. Mater. 2016, 26, 4661.
CoFeO@N/S-rGO	Carbon paper	1.63	1.0 M KOH	J. Mater. Chem. A 2018, 6, 15728.
CoP/NCNHP	Carbon paper	1.64	1.0 M KOH	J. Am. Chem. Soc., 2018, 140, 7.
Fe-Ni@NCCNTs	Nickel foam	1.64	1.0 M KOH	Angew. Chem., 2018, 57, 8921.
NiFe/NiCo ₂ O ₄ / Ni	Nickel foam	1.67	1.0 M KOH	Adv. Funct. Mater. 2016, 26, 3515
FeCoNi@NCP	Carbon paper	1.687	1.0 M KOH	ACS Catal. 2017, 7, 469
Co ₁ Mn ₁ CH/NF	Nickel foam	1.68	1.0 M KOH	J. Am. Chem. Soc., 2017, 139, 8320-8328.
Co(OH)2@NCNTs@NF	Nickel foam	1.72	1.0 M KOH	Nano Energy, 2018, 47, 96-104

Reference

- [1] a) Y. Sun, C. Liu, D. C. Grauer, J. Yano, J. R. Long, P. Yang, C. J. Chang, *J. Am. Chem. Soc.* 2013, **135**, 17699; b) N. Kornienko, J. Resasco, N. Becknell, C.-M. Jiang, Y.-S. Liu, K. Nie, X. Sun, J. Guo, S. R. Leone, P. Yang, *J. Am. Chem. Soc.* 2015, **137**, 7448.
- [2] a) H. Liang, A. N. Gandi, C. Xia, M. N. Hedhili, D. H. Anjum, U. Schwingenschlögl, H. N. Alshareef, *ACS Energy Lett.* 2017, 2, 1035; b) H. Zhou, F. Yu, J. Sun, R. He, S. Chen, C.-W. Chu, Z. Ren, *Proc. Natl. Acad. Sci. U. S. A.* 2017, 114, 5607; c) Q. Zhang, N. M. Bedford, J. Pan, X. Lu, R. Amal, *Adv. Energy Mater.* 2019, 9, 1901312; d) Z. Qiu, C.-W. Tai, G. A. Niklasson, T. Edvinsson, *Energy Environ. Sci.* 2019, 12, 572.
- [3] a) R. Bose, V. R. Jothi, D. B. Velusamy, P. Arunkumar, S. C. Yi, *Part. Part. Syst. Charact.* 2018, 35, 1800135; b) V. R. Jothi, R. Bose, H. Rajan, C. Jung, S. C. Yi, *Adv. Energy Mater.* 2018, 8, 1802615; c) R. Bose, K. Karuppasamy, H. Rajan, D. B. Velusamy, H.-S. Kim, A. Alfantazi, *ACS Sustainable Chem. Eng.* 2019, 7, 16392.
- [4] a) R. Bose, Z. Jin, S. Shin, S. Kim, S. Lee, Y.-S. Min, *Langmuir* 2017, 33, 5628; b) R. Bose,
 M. Seo, C.-Y. Jung, S. C. Yi, *Electrochim. Acta* 2018, 271, 211.