Electronic Supplementary Information

Ultrathin AgPt Alloy Nanorods as Low-cost Oxygen Reduction Reaction Electrocatalysts in Proton Exchange Membrane Fuel Cells

Elok Fidiani,[†] Gnanavel Thirunavukkarasu,[‡] Yang Li,[†] Yulung Chiu,[‡] Shangfeng Du^{†*}

[†]School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, U.K.

*School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, U.K.

*To whom correspondence should be addressed. Email: <u>s.du@bham.ac.uk</u> (SD)

Fig. S1 a) High-resolution TEM image of Ag_1Pt_4 NR/C (atomic ratio of Ag:Pt = 1:4), **b-e**) show the element mapping by STEM-EDX analysis.

Fig. S2 TEM images of the AgPt NR/C catalysts with different atomic ratios of Ag to Pt: **a**) Pt NR/C, **b**) Ag₁Pt₄ NR/C, **c**) Ag₁Pt₂ NR/C, **d**) Ag₁Pt₁ NR/C, **e**) Ag₂Pt₁ NR/C and **f**) Ag₂Pt₁ NR/C –ii (the concentration of metal precursors were doubled toward the formic acid).

Table S1 The meatal residue generated by TGA and the corresponding metal content measured by ICP-MS and SEM-EDX.

	TGA	ICP-MS / wt%		ICP-MS / at%		EDX / at%	
Catalysts	(metal loading / wt%)	Ag	Pt	Ag	Pt	Ag	Pt
Pt NR/C	58.20	0	100	0	100	0	100
Ag ₁ Pt ₄ NR/C	61.20	11.53	88.47	19.07	80.93	22.29	77.71
Ag ₁ Pt ₂ NR/C	62.04	21.16	78.84	32.67	67.32	39.95	60.05
Ag ₁ Pt ₁ NR/C	60.98	32.23	67.77	46.23	53.77	55.54	44.46
Ag ₂ Pt ₁ NR/C	63.22	52.82	47.18	66.94	33.06	70.47	29.53

Fig. S3 EDX spectrum of a) Ag₁Pt₄ NR/C, b) Ag₁Pt₂ NR/C, c) Ag₁Pt₁ NR/C and d) Ag₂Pt₁ NR/C.

Fig. S4 XRD pattern of Ag_2Pt_1 NR/C -ii, produced by using double Ag and Pt precursor concentration with the same amount of formic acid, resulting in the formation of enormous amount AgCl.

Fig. S5 TEM images of Ag_1Pt_1 NR/C heat-treated at different temperatures under 4% H₂/Ar flow for 2 hours.

Fig. S6 XPS survey for the Pt NR/C and AgPt NR/C catalysts with the varied Ag and Pt ratios.

		Pt 4f / %			Ag 3d / %		
Catalysts	Pt ⁰	Pt^{2+}	Pt^{4+}	Ag^0	Ag^+		
Pt NR/C	100	0	0	0	0		
$Ag_1Pt_4 NR/C$	96.23	2.19	1.58	100	0		
$Ag_1Pt_2 NR/C$	94.48	2.82	2.7	100	0		
$Ag_1Pt_1 NR/C$	94.08	3.50	2.42	100	0		
$Ag_2Pt_1 NR/C$	94.03	3.08	2.86	97.99	2.01		

Table S2 The composition of Pt and Ag oxidation states obtained from Pt 4f and Ag 3d XPS region

Fig. S7 EIS measured at 0.5 V with an amplitude of 10 mV in the frequency range 10k–0.1 Hz.

Fig. S8 MEA testing results of the as-made AgPt NR/C catalysts in comparison to the same catalysts prior heat treatment: **a)** polarization and power density curves, and **b)** EIS plots recorded at 0.03 A cm⁻² with an amplitude of 72 mA, **c)** 0.5 V with an amplitude of 10 mV in the frequency range 10k–0.1 Hz. (The measurements were recorded at a cell temperature of 80 °C and fully humidified H₂/air with a pressure of 2.5/2.3 bar and the stoichiometry of 1.3/1.5, respectively).

Fig. S9 XPS spectra of high-resolution Pt 4f and Ag 3d region of a-b) Ag₁Pt₁ NR/C and c-d) non-heat treatment Ag₁Pt₁ NR/C catalysts.

Fig. S10 Cathode CVs of the Pt/C, Pt NR/C and AgPt NR/C catalysts with different Ag and Pt ratios recorded between 0.05-1.2 V with a scan rate of 20 mV s⁻¹ (the cathode was fully saturated in N_2).

Fig. S11 Tafel slopes based on the polarization curves obtained under H_2/O_2 testing at a pressure of 1.5/1.5 bar with stoichiometry ratios of 2/9.5, respectively. The measurements were recorded at a cell temperature of 80 °C and fully humidified gases. The slope were determined based on the first 5 points at the high potential region.

Fig S12 Cross-sectional SEM-EDX mapping of Ag_1Pt_1 NR/C after the ADT