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Supporting methods for the theoretical modeling 

1.  Parabolic two-band model for electrical transport 

The primary valence band L and secondary valence band H with an energy difference ∆E𝐿−𝐻 (from 0.14 to 

0.06 eV) are considered in this parabolic two-band model. Reference to previous literatures,1, 2 we set the 

effective mass of the band L (𝑚𝐿
∗) and band H (𝑚𝐻

∗ ) as 1.2 𝑚𝑒 and 6.1 𝑚𝑒  respectively in our theoretical 

modeling. The Seebeck coefficient 𝑆𝐿 for the band L is calculated as below:3 

𝑆𝐿 =
𝑘𝐵

𝑒
[

(𝑟+2.5)𝐹𝑟+1.5(𝐸𝐹
∗ ) 

(𝑟+1.5)𝐹𝑟+0.5(𝐸𝐹
∗ )

− 𝐸𝐹
∗]                                  (1) 

where 𝑘𝐵 is the Boltzmann constant, 𝑒 is electron charge, 𝐸𝐹
∗ is the reduced Fermi level 

E𝐹

𝑘𝐵𝑇
, 𝑟 is the 

scattering parameters (generally set 𝑟 = −0.5 for acoustic scattering), and the general Fermi integrals 𝐹𝑠 is 

defined as:3  

𝐹𝑠(𝐸𝐹
∗) = ∫

𝐸∗𝑠

1+𝑒𝑥𝑝(𝐸∗−𝐸𝐹
∗ )

𝑑𝐸∗∞

0
                            (2) 

The light-hole carrier density 𝑝𝐿 of band L is set as:
3 

𝑝𝐿 =
1

2𝜋2 (
2𝑚𝐿

∗ 𝑘𝐵𝑇

ℏ2 )3/2𝐹0.5(𝐸𝐹
∗)                           (3) 

The electrical conductivity 𝜎𝐿 of band L is set as:
3 

𝜎𝐿 =
𝑒2𝜏0

3𝜋2𝑚𝐿
∗ (𝑟 + 1.5)(

2𝑚𝐿
∗ 𝑘𝐵𝑇

ℏ2 )3/2𝐹𝑟+0.5(𝐸𝐹
∗)                            (4) 

The corresponding Seebeck coefficient 𝑆𝐻, carrier density 𝑝𝐻 and electrical conductivity 𝜎𝐻 for the H 

band can be calculated as below: 

𝑆𝐻 =
𝑘𝐵

𝑒
[

(𝑟+2.5)𝐹𝑟+1.5(𝐸𝐹
∗ −∆) 

(𝑟+1.5)𝐹𝑟+0.5(𝐸𝐹
∗ −∆)

− (𝐸𝐹
∗ − ∆)]                         (5) 

𝑝𝐻 =
1

2𝜋2 (
2𝑚𝐻

∗ 𝑘𝐵𝑇

ℏ2 )3/2𝐹0.5(𝐸𝐹
∗ − ∆)                           (6) 

 𝜎𝐻 =
𝑒2𝜏0

3𝜋2𝑚𝐻
∗ (𝑟 + 1.5)(

2𝑚𝐻
∗ 𝑘𝐵𝑇

ℏ2 )3/2𝐹𝑟+0.5(𝐸𝐹
∗ − ∆)                (7) 

where ∆ represent the reduced energy difference 
∆E𝐿−𝐻

𝑘𝐵𝑇
. Approximately, we take the scattering time 𝜏0 as 

a constant in the theoretical modelling of S.  
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The total Seebeck coefficient is calculated as:  

         𝑆𝑡𝑜𝑡𝑎𝑙 = (𝜎𝐿𝑆𝐿 + 𝜎𝐻𝑆𝐻)/(𝜎𝐿 + 𝜎𝐻)                           (8) 

The measured total Hall carrier concentration 𝑝𝐻𝑎𝑙𝑙 for the two-band model is given as: 
4 

𝑝𝐻𝑎𝑙𝑙 = (𝜇𝐿𝑝𝐿 + 𝜇𝐻𝑝𝐻)2/(𝐴𝐿𝜇𝐿
2𝑝𝐿 + 𝐴𝐻𝜇𝐻

2𝑝𝐻)                    (9) 

where 𝐴𝐿,𝐻 and 𝜇𝐿,𝐻 are the Hall factor and carrier mobility, respectively. The Hall factor 𝐴𝐿,𝐻 usually 

lies in the range of 1-2, and the theoretical 𝐴𝐿,𝐻 is calculated to be ~1.18 when only considering the acoustic 

scattering.4 Not that the measured Hall carrier concentration 𝑝𝐻𝑎𝑙𝑙  is smaller than the actual total hole 

concentration 𝑝𝑡𝑜𝑡𝑎𝑙 = 𝑝𝐿 + 𝑝𝐻.  

  For the modeling of the carrier-density-dependent power factor PF and figure of merit ZT, the 

experimental data of carrier mobility 𝜇𝑒𝑥𝑝 and lattice thermal conductivity 𝜅𝑙𝑎𝑡 are used in the theoretical 

computing. The carrier thermal conductivity 𝑒 is calculated by the 𝑒 = 𝐿𝑇/𝜌, where the Lorenz number 

𝐿 is estimated by an empirical equation:5 𝐿 = 1.5 + exp (−|𝑆|/116) (S and 𝐿 are in the unit of μVK-1 

and 10-8 WΩK-2 respectively). The total thermal conductivity 𝑡𝑜𝑡 is the sum of 𝑒 and 𝜅𝑙𝑎𝑡. 

 

2.  Parabolic three-band model for electrical transport 

In order to consider the bipolar transport at higher temperatures, the three-band model including a 

conduction band is used for the theoretical modeling. Reference to previous literatures,1, 2 the effective mass 

of the conduction band C (𝑚𝑐
∗) of GeTe is estimated to be 0.78 𝑚𝑒, and the bandgap E𝑔 is about 0.23 eV 

based on the results of first-principle calculations. 

The corresponding Seebeck coefficient 𝑆𝑐 , carrier density 𝑛𝑐  and electrical conductivity 𝜎𝑐  of the 

conduction band are listed below: 

𝑆𝑐 = −
𝑘𝐵

𝑒
[

(𝑟+2.5)𝐹𝑟+1.5(−𝐸𝐹
∗ −𝛿) 

(𝑟+1.5)𝐹𝑟+0.5(−𝐸𝐹
∗ −𝛿)

− (−𝐸𝐹
∗ − 𝛿)]                         (10) 
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𝑛𝑐 =
1

2𝜋2 (
2𝑚𝑐

∗𝑘𝐵𝑇

ℏ2 )3/2𝐹0.5(−𝐸𝐹
∗ − 𝛿)                           (11) 

𝜎𝑐 =
𝑒2𝜏0

3𝜋2𝑚𝑐
∗ (𝑟 + 1.5) (

2𝑚𝑐
∗𝑘𝐵𝑇

ℏ2 )

3

2
𝐹𝑟+0.5(−𝐸𝐹

∗ − 𝛿)                  (12) 

where 𝛿 represent the reduced band gap 
E𝑔

𝑘𝐵𝑇
. 

The total Seebeck coefficient in the three-band model is calculated as:  

         𝑆𝑡𝑜𝑡𝑎𝑙 = (𝜎𝐿𝑆𝐿 + 𝜎𝐻𝑆𝐻 + 𝜎𝑐𝑆𝑐)/(𝜎𝐿 + 𝜎𝐻 + 𝜎𝑐)                           (13) 

In the theoretical modelling process, the Fermi level is first determined by the measured room-temperature 

Hall concentration, then the actual total hole concentration at 300 K is determined by 𝑝𝑡𝑜𝑡𝑎𝑙 = 𝑝𝐿 + 𝑝𝐻 =

𝑝0. As revealed by the temperature-dependent Hall measurement (Figure S1), the measured Hall carrier 

concentration 𝑝𝐻𝑎𝑙𝑙  first stays as a constant and then exponentially increases with the temperature. 

Therefore, we use a constant carrier density 𝑝0 from 300 to 500 K and a varying carrier density 𝑝0𝑒𝑥𝑝(𝐴 −

𝐵

𝑇
)  from 500 to 800 K to model the temperature-dependent carrier density. Because the electron 

concentration 𝑛𝑐 comes from the intrinsic excitation, knowing 𝑛𝑐 = 𝑛𝑏𝑖 = 𝑝𝑏𝑖, we then have 𝑝𝐿 + 𝑝𝐻 −

𝑛𝑐 equals to 𝑝0 from 300 to 500 K and 𝑝0𝑒𝑥𝑝(𝐴 −
𝐵

𝑇
) from 500 to 800 K.  

  

3. Debye-Callaway model for calculating the lattice thermal conductivity: 

The temperature (T)-dependent  𝜅𝑙𝑎𝑡 (𝑇)  can be expressed as a sum of the spectral lattice thermal 

conductivity 𝜅𝑠 (𝜔) from different frequencies using the Debye-Callaway model: 6, 7  

𝜅𝑙𝑎𝑡 = ∫ 𝜅𝑠 (𝜔) 𝑑𝜔 =
1

3
∫ 𝐶𝑠 (𝜔)𝑣𝑔 (𝜔)2𝜏𝑡𝑜𝑡(𝜔)𝑑𝜔

𝜔𝑎

0
              (14) 

Thus, the 𝜅𝑠 (𝜔)  is determined by the 𝐶𝑠 (𝜔) , the frequency-dependent phonon group velocity 𝑣𝑔 (𝜔) 

and total relaxation time 𝜏𝑡𝑜𝑡(𝜔). Generally, as the phonons in optical branches shows low velocity, only 

the phonons in acoustic branches are considered to calculate the 𝜅𝑙𝑎𝑡 . Thus, the cut-off frequency for 

acoustic branches 𝜔𝑎  is given by 𝜔𝑎 = (
6𝜋2

𝑉𝑐𝑒𝑙𝑙
)1/3𝑣𝑠  (

6𝜋2

𝑁𝑉𝑎𝑣
)1/3𝑣𝑠 , where N, 𝑉𝑎𝑣  and 𝑣𝑠  are the atomic 
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numbers in a primitive cell, average atomic volume and sound speed respectively. For simple approximation, 

the frequency-dependent phonon group velocity 𝑣𝑔 (𝜔) is set as a constant value 𝑣𝑠, and 𝜅𝑙𝑎𝑡 is calculated 

by the following equation : 6, 7 

𝜅𝑙𝑎𝑡 =
𝑘𝐵

2𝜋2𝑣𝑠
(

𝑘𝐵𝑇

ℏ
)3 ∫ 𝜏𝑡𝑜𝑡(𝑥)

𝑥4𝑒𝑥

(𝑒𝑥−1)2 𝑑𝑥
𝜃𝑎/𝑇

0
                     (15) 

The dimensionless variable x in equation (15) is defined as x  ℏ𝜔/𝑘𝐵𝑇, where 𝜔 is the phonon frequency 

and the cut-off Debye temperature for acoustic branches 𝜃𝑎 is given by the following equation: 

 𝜃𝑎 = ℏ𝜔𝑎/𝑘𝐵 = (
6𝜋2

𝑁𝑉𝑎𝑣
)1/3ℏ𝑣𝑠/𝑘𝐵.                       (16) 

The N 2 for the GeTe is used for the calculation of 𝜃𝑎. The 𝜏𝑡𝑜𝑡(𝑥) is the reciprocal sum of the relaxation 

times from different scattering mechanisms according to the Matthiessen’s rule:8  

𝜏𝑡𝑜𝑡
−1 = 𝜏𝑈

−1 + 𝜏𝑁
−1 + 𝜏𝑃𝐷

−1+𝜏𝐵
−1+𝜏𝑆𝐹

−1 + ⋯               (17) 

where 𝜏𝑈
−1 ,  𝜏𝑁

−1 , 𝜏𝑃𝐷
−1 , 𝜏𝐵

−1  and 𝜏𝑆𝐹
−1  are the contributions from the Umklapp phonon-phonon 

scattering, normal phonon-phonon scattering, point-defect scattering, boundary scattering and stacking 

default scattering respectively. The 𝜏𝑈
−1 is calculated from the following equation: 9-11 

𝜏𝑈
−1 =

2

(6𝜋2)1/3

𝑘𝐵𝑉𝑎𝑣
1/3𝛾2𝑇

𝑀𝑎𝑣𝑣𝑠
3 𝜔2𝑒𝑥𝑝(−

𝜃𝑎

𝑏𝑇
) 

2

(6𝜋2)1/3

𝑘𝐵
3𝑉𝑎𝑣

1/3𝛾2𝑇3

𝑀𝑎𝑣𝑣𝑠
3ℏ2 𝑥2𝑒𝑥𝑝(−

𝜃𝑎

𝑏𝑇
)         (18) 

where 𝑀𝑎𝑣 and γ are the average atomic mass and Grüneisen parameter respectively, and b is a constant 

characteristic of the vibrational spectrum of the material. For simple approximation, the structure of 𝜏𝑁
−1 

is set as the same as 𝜏𝑈
−1 with an additional factor 𝐵𝑁.

7, 11, 12  

𝜏𝑁
−1 = 𝐵𝑁𝜏𝑈

−1                                   (19) 

The 𝜏𝑃𝐷
−1 is calculated from the following equation:6 

𝜏𝑃𝐷
−1 =

𝑉𝑎𝑣Γ

4𝜋𝑣𝑠
3 𝜔4 =

𝑉𝑎𝑣Γ

4𝜋𝑣𝑠
3 (

𝑘𝐵𝑇

ℏ
)4𝑥4                           (20) 

The parameter Γ describes the mass and atomic size contrast with the lattice, which is calculated by the 

following equations:9, 13-16 
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  Γ = 𝛤𝑀 + 𝛤𝑆                                 (21) 

𝛤𝑀 = ∑ 𝑐𝑖(
𝑀̅𝑖

𝑀̿
)2

𝑖 𝛤𝑖,𝑀    ;      𝛤𝑆 = ∑ 𝑐𝑖(
𝑟̅𝑖

𝑟̿
)2

𝑖 𝛤𝑖,𝑆                   (22) 

𝛤𝑖,𝑀 = ∑ 𝑓𝑗(1 −
𝑚𝑗

𝑖

𝑀̅𝑖
)2

𝑗   ;  𝛤𝑖,𝑠 = ∑ 𝑓𝑗(1 −
𝑟𝑗

𝑖

𝑟̅𝑖
)2

𝑗                    (23) 

where 𝛤𝑖,𝑀 (𝛤𝑖,𝑆) , 𝑐𝑖 , 𝑀̅𝑖  (𝑟̅𝑖  )  is mass (strain) fluctuation scattering parameters, relative fraction and 

average mass (atomic size) for the ith sublattice respectively, and 𝑀̿ (𝑟̿) is the average atomic mass (size) 

of the compound from all sublattices. The 𝑚𝑗
𝑖  (𝑟𝑗

𝑖) 𝑎𝑛𝑑 𝑓𝑗 represents the jth atomic mass (size) and atomic 

fraction on the he ith sublattice respectively.  

The boundary scattering for 𝜏𝐵
−1 in polycrystalline materials with average grain size 𝐷 can be calculated 

by the following equation:6 

𝜏𝐵
−1 =

𝑣𝑠

𝐷
                                      (24) 

The 𝜏𝑆𝐹
−1 is calculated by the following equation:17 

𝜏𝑆𝐹
−1 = 0.7

𝑎𝑙𝑎𝑡
2𝛾2𝑁𝑠

𝑣𝑠
𝜔2 = 0.7(

𝑘𝐵𝑇

ℏ
)2 𝑎𝑙𝑎𝑡

2𝛾2𝑁𝑠

𝑣𝑠
𝑥2                    (25) 

where 𝑁𝑠 is the number of stacking faults a line of unit length, and 𝑎𝑙𝑎𝑡 is the average lattice parameter. 
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Supplementary Tables and Figures 

 

Table S1: Parameters for modelling the lattice thermal conductivity of the Ge0.96(1-x)Pb0.96xBi0.08Te1.08  

Parameters Description GeTe x=0 x=0.15 Reference 

𝒗𝒔 (ms-1) Average velocity 1971.4 2141.1 1946.8 Measured 

𝒗𝒍  (ms-1) Longitudinal velocity 3395.6 3325.5 3200 Measured 

𝒗𝒕 (ms-1) Transverse velocity 1761.4 1929.4 1745.5 Measured 

𝜽𝒂 (K) Acoustic Debye 

temperature 

155.1 168.0 152.8 Calculated  

𝑽𝒂𝒗 (𝟏𝟎−𝟐𝟗 m3) Average atomic volume 2.708 2.73 2.73 This work 

𝑴𝒂𝒗 (𝟏𝟎−𝟐𝟓 kg) Average atomic mass 1.66 1.757 1.909 Calculated 

𝑩𝑵 Ratio of normal process 0.3 0.3 0.3 fitted 

𝛄 Grüneisen parameter 2.19 2.19 2.19 18 

b Characteristic of 

vibrational spectrum 

0.9 0.9 0.9 fitted 

𝑫 (μm) Grain size 2 2 2 This work 

𝚪 Scattering parameter 0 0.0593 0.121 This work 

𝒂𝒍𝒂𝒕 (nm) Lattice parameters 0.600 0.600 0.608 Calculated 

𝑵𝒔 (𝟏𝟎𝟔 m-1) Number of stacking faults 0 7.5  9 This work 
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Figures S1. Repeatability test of the Ge0.96(1-x)Pb0.96xBi0.08Te1.08 samples with a) x 0, b) x 0.03, c) x 0.06.  
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Figures S2. Repeatability test of the Ge0.96(1-x)Pb0.96xBi0.08Te1.08 samples with a) x 0.09, b) x 0.12, c) x 0.15.  

 

 

 

 

Figure S3. Microstructural characterizations of Ge0.96(1-x)Pb0.96xBi0.08Te1.08 with x 0.15. (a-f) SEM image on 

a fractured surface. 
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Figure S4. Microstructural characterizations of Ge0.96(1-x)Pb0.96xBi0.08Te1.08 with x 0.15. (a) The total EDS 

elemental mapping. (d) The corresponding SEM image of the region for EDS elemental mapping. Elemental 

mapping graph of (b) Ge, (c) Te, (e) Bi and (f) Pb in the region as shown in (d). 

 

 

 

Figure S5. Microstructural characterizations of Ge0.96(1-x)Pb0.96xBi0.08Te1.08 with x 0.15. (a) The total EDS 

elemental mapping. (d) The corresponding SEM image of the region for EDS elemental mapping. Elemental 

mapping graph of (b) Ge, (c) Te, (e) Bi and (f) Pb in the region as shown in (d). 
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Figure S6. Transmission electron microscopy (TEM, FEI Titan G2-300) characterizations. (a)-(c) High-

resolution scanning TEM images in different magnification. (d)-(f) High-angle annular dark field (HAADF) 

scanning TEM images in different magnification. Randomly distributed streaks or defect layers are indicated 

in these images, which should be ascribed to the frequently observed Ge-vacancy layers in GeTe-based alloys. 

These TEM images were taken on the Ge0.95(1-x)Pb0.95xBi0.1Te1.1 samples with x 0.13, which have similar 

compositions with the Ge0.96(1-x)Pb0.96xBi0.08Te1.08 samples studied in these work. More similar patterns of 

streaks or defect layers can also be found in our previous studied GeTe-based samples.19  
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Figure S7. Temperature-dependent Hall carrier density of the Ge0.96(1-x)Pb0.96xBi0.08Te1.08 samples using a 

customized Hall Measurement Systems, revealing that the Hall carrier density is nearly temperature-

independent below 500 K but exponentially increase above 500 K. 
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Figure S8.  The DFT calculations using the rhombohedral GeTe supercell model. a) Band structures of the 

Ge24Te24. b) The calculated band gap 𝐸𝑔 and the energy difference between the primary and secondary 

valence band ∆E𝐿−𝐻 for the Ge24Te24, Ge23Pb1Te24, and Ge22Pb2Te24. c) Band structures and d) DOS of the 

Ge23Pb1Te24. e) Band structures and f) DOS of the Ge22Pb2Te24.  
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Figure S9. The infrared absorption spectrum of the Ge0.96(1-x)Pb0.96xBi0.08Te1.08, revealing the optical bandgap 

around 0.14 eV and the existence of two kinds of valence bands with energy difference around 0.1 eV.  
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Figure S10.  DFT calculated band structures of (a) the Bi-doped samples (Ge31Bi1Te32) and (b) Pb-Bi co-

doped samples (Ge30Bi1Pb1Te32). Impurity-induced bands associated with the trivalent Bi dopants can be 

found between the bandgap, which are split off from the conduction-band bottom with large shifts towards 

the valence-band top. More analysis about the trivalent impurity-induced bands in GeTe can also be found 

in other reports.20  

 

 

 

Figure S11.  DFT calculated band structures of the Bi-doped samples (Ge31Bi1Te32) (a) without and (b) 

with considering the spin-orbital-coupling (SOC) effect, which is the reason for the band spit of the impurity-

induced band structures. 
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