Supplementary Material for

Theoretical Perspective of Performance-limiting Parameters in $Cu(In_{1-x}Ga_x)Se_2$ -based Photocathodes

Vikas Nandal,^{1*} Yohichi Suzuki,^{1,2} Hiroyuki Kobayashi,^{3,4} Kazunari Domen,^{4,5} and

Kazuhiko Seki1*

¹Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

²Quantum Computing Center, Keio University,3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japans

³*FUJIFILM* Corporation Frontier Core-Technology Laboratories Research & Development Management Headquarters, 577 Ushijima, Kaisei, Kanagawa 2588577, Japan

⁴Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

⁵Center for Energy & Environmental Science, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan

Parameters	CdS	Cu(In _{1-x} Ga _x)Se ₂	
Thickness	70 nm {ref. 1 }	1800 nm {ref. 1 }	
Effective density of states for	$10^{19} cm^{-3}$ {ref. ² }	$10^{19} cm^{-3}$ {ref. ² }	
conduction and valence band			
Mole fraction x	-	0-1	
Dielectric constant	$10 \{ \text{ref.}^{1,2} \}$	13.6 {ref. ¹ }	
Doping density	$10^{16} cm^{-3}$ (Donor) {ref. 1}	$10^{16} cm^{-3}$ (Acceptor) {ref. ¹ }	
Electron affinity	3.8 eV	$3.5 (x=0)$ to $4.2 (x=1) eV^1$	
Energy band gap	2.4 eV {ref. ¹ }	0.98 (x=0) to 1.5 (x=1) ¹	
Electron mobility	$100 \ cm^2/(Vs) \ {ref.}^2$	$100 \ cm^2/(Vs) \ {\rm ref.}^2 $	
Hole mobility	$25 \ cm^2/(Vs) \ {\rm ref.}^2 $	$25 \ cm^2/(Vs) \ {\rm ref.}^2 $	
Bulk defect density/carrier	-	$10^{13}, 10^{14} cm^{-3} / 1, 0.1 \mu s$	
lifetime		,	

Table S1. Material parameters used in electrical simulations of $CdS/Cu(In_{1-x}Ga_x)Se_2$ -based photocathodes.

Parameterization of Optical Constants:

The Forouhi–Bloomer (FB) dispersion relation is generally used to obtain optical constants like the refractive index n(E) and extinction coefficient k(E) of crystalline semiconductors^{3,4} and is given as

$$k(E) = \left[\sum_{i=1}^{m} \frac{A_i}{E^2 - B_i E + C_i}\right] (E - E_g)^2, \quad (1)$$
$$n(E) = n_{\infty} + \sum_{i=1}^{m} \frac{B_i E + C_i}{E^2 - B_i E + C_i}. \quad (2)$$

Here, E_g is the onset energy of optical absorption, n_{∞} is the refractive index in the high frequency range, and the independent parameters A_i, B_i and C_i characterize distinct interband transitions. Every summation term in eq. 1 and 2 is the contribution from either a peak or shoulder in the spectra of extinction coefficient *k* and refractive index *n*. The upper limit *m* is the number of different curvatures observed in optical constant *k*. The dependent parameters B_i and C_i in eq. 2 are calculated using following expressions:

$$B_{i}' = \frac{A_{i}}{Q_{i}} \bigg[-\frac{B_{i}^{2}}{2} + E_{g}B_{i} - E_{g}^{2} + C_{i} \bigg],$$

$$C_{i}' = \frac{A_{i}}{Q_{i}} \bigg[\frac{B_{i}(E_{g}^{2} + C_{i})}{2} - 2E_{g}C_{i} \bigg],$$

$$Q_{i} = \frac{1}{2} \sqrt{4C_{i} - B_{i}^{2}}.$$

Each independent parameter, i.e., E_g , n_{∞} , A_i , B_i , and C_i is approximated by a second-order polynomial of mole fraction x; i.e., $q_2x^2 + q_1x + q_0$, where, q_0 , q_1 , and q_2 are fitting coefficients. Numerical values of fitting coefficients for respective independent parameters are provided in Table S2.

Table S2: Numerical values of coefficients of the second-order polynomial $(q_2x^{2+} q_1x + q_0)$ used to obtain different parameters for parameterization of optical constants such as refractive index n(E) and extinction coefficient k(E) using the Forouhi–Bloomer dispersion relation.⁴

Parameter	q ₂	q ₁	q_0
A_{I}	0.032	-0.128	0.117
$B_{l}(eV)$	0.82	0.68	2.39
$C_{I}(eV^{2})$	1.778	0.343	1.738
A_2	0.091	0.063	0.066
$B_2(eV)$	-0.54	0.69	5.90
$C_2(eV^2)$	-1.33	2.60	9.16
$E_g(eV)$	0.26	0.46	0.53
n_{∞}	0.054	-0.046	2.450

Figure S1. Parametrization of optical constants using the Forouhi-Bloomer (FB) dispersion relation for CdS/CIGS photocathodes with different mole fraction x. Variation of optical constants such as (a) extinction coefficient $k(\lambda)$ and (b) refractive index $n(\lambda)$ with wavelength λ for the CIGS layer (x=0.23 and 0.78) and CdS front window layer. Symbols indicate the extracted experimental data from the literature,⁴ while the black solid (for x=0.23) and dotted (for x=0.78) lines correspond to the FB fit.

The FB fit enables us to calculate optical constants for different x. For instance, in Fig. S1a, the calculated extinction coefficient k matches closely with the experimental data over the wavelength range for different x (=0.23 and 0.78). Furthermore, Fig. S1b shows that the estimated refractive index n is in close agreement with actual data at long wavelength, but it deviates at short wavelength (<400 nm). To analyze the effect of the mismatch of n, we performed optical simulations by incorporating optical constants n and k obtained from experiments and the FB fit for x=0.23.

Figure S2. Current potential characteristics (symbols-baseline experimental data; line- simulation) of CdS/CIGS based photocathode with mole fraction x=0.5. For simulation data, the interface defect density $N_I = 2.5 \times 10^8 cm^{-2}$ and bulk defect density $N_B = 10^{14} cm^{-3}$.

Table S3. Parameters extracted from the comparison of simulation and experimental data of current potential characteristics of CdS/Cu($In_{1-x}Ga_x$)Se₂ photocathodes with different mole fraction x.

Mole	Resistance	Shunt	Interface defect	Bulk life time	Attenuation
fraction x	$R_{s} (\Omega cm^{2})$	Resistance R _{sh} (density N_I	in CIGS τ (μs)	constant Ac
	3 ()	Ωcm^2			(%)
0	8.5	25	-	1	73.43
0.5	12	55	$3 \times 10^8 cm^{-2}$	1	86.27
0.7	15	168	$12 \times 10^8 cm^{-2}$	0.1	61.06
1	25	500	$4 \times 10^8 cm^{-2}$	0.1	25

References:

- Kobayashi, H.; Sato, N.; Orita, M.; Kuang, Y.; Kaneko, H.; Minegishi, T.; Yamada, T.; Domen, K. Development of Highly Efficient CuIn0.5Ga0.5Se2-Based Photocathode and Application to Overall Solar Driven Water Splitting. *Energy Environ. Sci.* 2018, *11* (10), 3003–3009. https://doi.org/10.1039/C8EE01783B.
- (2) Chirilă, A.; Buecheler, S.; Pianezzi, F.; Bloesch, P.; Gretener, C.; Uhl, A. R.; Fella, C.; Kranz, L.; Perrenoud, J.; Seyrling, S.; et al. Highly Efficient Cu(In,Ga)Se2 Solar Cells Grown on Flexible Polymer Films. *Nat. Mater.* 2011, *10* (11), 857–861. https://doi.org/10.1038/nmat3122.
- (3) Forouhi, A. R.; Bloomer, I. Optical Properties of Crystalline Semiconductors and Dielectrics. *Phys. Rev. B* 1988, 38 (3), 1865–1874. https://doi.org/10.1103/PhysRevB.38.1865.
- (4) Orgassa, K. *Coherent Optical Analysis of the ZnO/CdS/Cu(In,Ga)Se*₂ *Thin Film Solar Cell*; Berichte aus der Halbleitertechnik; Shaker, 2004.