Supporting Information for

Unveiling the Solid-solution Charge Storage Mechanism in 1T Vanadium Disulfide Nanoarrays Cathode

Xinqi Liang^a, Minghua Chen^{a*}, Hekang Zhu^b, He Zhu^b,Xuehao Cui^c, Jiaxu Yan^{c*}, Qinguo Chen^a, Xinhui Xia^d, Qi Liu^{b*}

^a Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), Harbin University of Science and Technology, Harbin 150080, China

^b Department of Physics, City University of Hong Kong, Hong Kong, 999077 P. R. China

^c Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China.

^d State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

*Corresponding author, E-mail: <u>mhchen@hrbust.edu.cn</u> (M. Chen); <u>qiliu63@cityu.edu.hk (Q. Liu);</u> <u>iamjxyan@njtech.edu.cn (J. Yan).</u>

Fig. S1 SEM images of a) low and b) high magnification of VS_2 powder.

Fig. S2 TEM images of VS_2 and the corresponding element mapping of V and S.

Fig. S3 XRD patterns of the VS_2 powder.

Fig. S4 The Raman shift spectrum of VS_2/CC nanosheeets arrays.

Fig. S5 The FTIR spectrum of VS_2/CC nanosheet arrays.

Fig. S6 XPS spectrum. a) Survey spectra. b) C 1s peaks of VS_2/CC nanosheet arrays.

Fig. S7 TGA curve of VS_2/CC nanoarrays electrode under an air atmosphere.

Fig. S8 Photos of self-supported VS_2/CC nanoarrays electrodes, which are bent using very small force. This demonstrates the flexibility and light weight of the electrodes.

Fig. S9 Cycle stability test at 20 C for 1000 cycles.

Fig. S10 a) Charge/discharge curves measured between 1.5 and 3.5 V at a rate of 0.2 C. b)
Cycle stability test of VS₂/CC nanoarrays and VS₂ powder electrodes at 0.2 C for 200 cycle.
c) Rate performance of VS₂/CC nanoarrays electrode and power electrode.

Fig. S11 SEM images of VS_2/CC nanoarrays electrode after 200 cycles at different magnification.

Fig. S12 In situ XRD profile evolution of diffraction peak 102 of VS_2 at 0.04C according to the electrochemical discharging and charging profile nearby. It can be seen that after charging the 102 peak restores to the initial position exactly as the other peaks in Fig. 3a and b new diffraction peak appearing during charging does not match with any related substance consisting of V or S, it is most probably coming from the side effects of the electrolytes.

Fig. S13 a) Calculated band structure of $1T VS_2$ monolayer, in which the black (red) line indicates spin up (down) states. b) Total density of states of VS_2 and projected density of states consisting of 3d orbit of V atoms and 2p orbit of S atoms.

Electrode	Specific	Rate	Cycling	Ref
description	capacity	capability	retention	
VS ₂ /CC array	336 mA h g ⁻¹	66 mA h g ⁻¹ at	84.4 % after	This work
(this work)	at 0.5 C	20 C	10,00 cycles at	
	between 1.5-		20 C	
	3.5 V			
State of art VANADIUM-based LIBs cathodes				
V ₂ O ₅ /CNT	339 mA h g ⁻¹	128 mA h g ⁻¹	83% after 100	1
	at 0.1 C	at 10 C	cycles at 10 C	
V ₂ O ₅ /PEDOT	265 mA h g ⁻¹	168 mA h g ⁻¹	98% after	2
	at 5 C	at 60 C	1000 cycles at	
			60C	
LiVO ₃	298.4 mA h g ⁻	160.5 mAhg ⁻¹	53 % after 100	3
	¹ at 50 mA g ⁻¹	at 800 mA g ⁻¹	cycles at 500	
			mA g ⁻¹	
Li ₃ VO ₄ /NG	139 mA h g ⁻¹	114 mA h g ⁻¹	91.4% after	4
	at 1 C	at 8C	300 cycles at	
			10C	
LiVPO ₄ F	141.3 mA h g-	104.2 mA h g ⁻¹	98% after 50	5
	¹ at 0.1 C	at 5C	cycles at 0.1C	
LiVPO ₄ F@C	134.7 mA h g-	97.9 mA h g ⁻¹	93.74 % after	6
	¹ at 0.2 C	at 10 C	800 cycles at	
			10C	
LiVPO ₄ F/NG	152.7 mA h g-	90.1 mA h g ⁻¹	87.4% after	7
	¹ at 0.1 C	at 20 C	500 cycles at	
			20C	
Co-doped	125 mA h g ⁻¹	72.2 mA h g ⁻¹	96.4% after 50	8
LiVPO ₄ F/C	at 0.2 C	at 10 C	cycles at 3C	
LiVOPO ₄	127 mA h g ⁻¹	83 mAhg ⁻¹ at	78.1 % after	9
	at 0.1 C	1C	30 cycles at	
			0.1C	
LiVOPO ₄ @V ₂ O ₅	158 mA h g ⁻¹	112mA h g ⁻¹ at	87.9 % after	10
	at 0.1 C	3 C	200 cycles at	
			0.1C	

 Table S1. Performance comparison with reported LIBs cathodes.

Supplementary References

- 1. C. Zhang, S.-H. Park, S. E. O'Brien, A. Seral-Ascaso, M. Liang, D. Hanlon, D. Krishnan, A. Crossley, N. McEvoy, J. N. Coleman and V. Nicolosi, *Nano Energy*, 2017, **39**, 151-161.
- 2. D. Chao, X. Xia, J. Liu, Z. Fan, C. F. Ng, J. Lin, H. Zhang, Z. X. Shen and H. J. Fan, *Adv. Mater.*, 2014, **26**, 5794-5800.
- 3. X. M. Jian, H. Q. Wenren, S. Huang, S. J. Shi, X. L. Wang, C. D. Gu and J. P. Tu, *J. Power Sources*, 2014, **246**, 417-422.
- 4. Y. Wang, H. Zhao, Y. Ji, L. Wang and Z. Wei, *Solid State Ion.*, 2014, **268**, 169-173.
- 5. B. Zhang, Y.-d. Han, J.-c. Zheng, C. Shen, L. Ming and J.-f. Zhang, *J. Power Sources*, 2014, **264**, 123-127.
- 6. G. Hu, Z. Gan, Y. Cao, K. Du, Y. Du and Z. Peng, *Electrochim. Acta*, 2018, **292**, 502-510.
- 7. K. Cui, S. Hu and Y. Li, *J. Power Sources*, 2016, **325**, 465-473.
- 8. Z. Peng, Z. Gan, K. Du, Y. Cao, X. Xie, Y. Wang, Y. Li and G. Hu, J. Alloy. Compd., 2018, 730, 261-269.
- 9. C. J. Allen, Q. Jia, C. N. Chinnasamy, S. Mukerjee and K. M. Abraham, *J. Electrochem. Soc.*, 2011, **158**, A1250.
- 10. J.-c. Zheng, Y.-d. Han, D. Sun, B. Zhang and E. J. Cairns, *Energy Storage Mater.*, 2017, **7**, 48-55.