Supporting information

Towards photovoltaic windows: Scalable fabrication of semitransparent modules based on non-fullerene acceptors via laser-patterning

Enrique Pascual-San-José^{a,b}, Golnaz Sadoughi^c, Luca Lucera^c, Marco Stella^b, Eugenia Martínez-Ferrero^b, Graham E. Morse^c, Mariano Campoy-Quiles^{*a} and Ignasi Burgués-Ceballos^{*c}

a. Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Bellaterra, Barcelona, Spain.

b. EURECAT, Centre Tecnològic de Catalunya, Parc Científic i de la Innovació TecnoCampus, Av. Ernest Lluch, 36, 08302, Mataró, Barcelona, Spain.

^c Merck Chemicals Ltd., Chilworth Technical Centre, University Parkway SO16 7QD Southampton, UK.

*Address all correspondence to Dr. Mariano Campoy-Quiles (<u>mcampoy@icmab.es</u>) and Dr. Ignasi Burgués-Ceballos (<u>ignasi.burgues@icfo.eu</u>)

Fig. S1. Thickness quantification of the bladed-coated films. (a) Optical density spectra as a function of the photoactive layer thickness (b) Optical density value at 610 nm as a function of the blade speed. (c) Thickness of the photoactive layer as a function of the optical density at 610 nm. Dashed lines and confidence band of 98% are plotted to guide the eye.

Table S1. Fine-tuned values for the laser patterning of P1, P2 and P3. The optical images of the screened laser parameter in Fig. S.

Ablation step	Current (A)	Overlap (%)	Frequency (kHz)	Speed (mm/s)	Nominal line width (mm)	Pulse width (µs)
P1	16-20	33	15	100	0.01	1
P2	17.5-19	90	100	100	0.01	1
P3	17-19	90	100	100	0.01	1

Fig. S2. Normalised absorption of PBTZT-stat-BDTT-8, 4TICO and blended materials.

Fig. S3. Contribution to transparency of each layer: photoactive layer (PAL), PEDOT:PSS 4083, PEDOT PH1000 and full semitransparent device (ST device). (a) For two PAL thicknesses 135 nm and 296 nm. (b) Human perception transmittance (HPT) as a function of the PAL thickness for each layer.

Fig. S4. Colour CIE coordinates of photoactive layer films (as depicted in Fig1b) and semitransparent device (with the contribution of electrodes).

Fig. S5. Groove profile of the optimized P1 patterning extracted with the mechanical profilometer.

Layers	PAL thickness (nm)	HPT (%)	AVT (%)	Transmission at 550 nm (%)	CIE coordinates (x,y)	Colour rendering index (CRI)
ITO	100	90.4	92.1	90	(0.3289, 0.3359)	99.2
PAL		83.7	80.6	86	(0.3102, 0.3352)	98.4
PAL+PEDOT	32	79	76	81	(0.3127, 0.3363)	98.1
ST device		63	61	65	(0.304, 0.3313)	98.8
PAL		62	60	64	(0.2803, 0.3416)	97.3
PAL+PEDOT	71	63.2	61.1	66	(0.2931, 0.3253)	98.4
ST device		49	48	50	(0.285, 0.3195)	98.4
PAL		55	53	57	(0.2687, 0.3070)	95.2
PAL+PEDOT	88	53.8	52.7	56	(0.2814, 0.3161)	97.3
ST device		40	40	42	(0.2667, 0.3052)	96.0
PAL		40	39	42	(0.2445, 0.2905)	88.8
PAL+PEDOT	135	37.3	38.7	38	(0.2457, 0.2803)	93.5
ST device		31	32	32	(0.2406, 0.2835)	90.4
PAL	160	34	34	35	(0.2321, 0.2774)	86.4
PAL+PEDOT		31.8	33.7	32	(0.2288, 0.2657)	87.9
ST device		26	27	27	(0.2273, 0.2713)	86.5
PAL		26	27	26	(0.2099, 0.2507)	75.6
PAL+PEDOT	200	25.7	27.3	26	(0.2116, 0.2557)	76.9
ST device		20	22	20	(0.2068, 0.2513)	74.3
PAL	240	21	23	21	(0.1959, 0.2373)	66.1
PAL+PEDOT		19.9	22	20	(0.1987, 0.2393)	68.4
ST device		14	16	14	(0.1884, 0.2284)	61.3
PAL		15	18	15	(0.1818, 0.2167)	55.8
PAL+PEDOT	300	15	17.9	14	(0.1837, 0.2125)	57.6
ST device		12	14	11	(0.1773, 0.2079)	52.9

Table S2. Transparency metrics and colour characteristics of PBDTZT-stat-DBTT-8 and 4TICO films shown in Figure 1. Human perception transmittance (HPT) and average visual transmittance (AVT) are defined in Eq.1 and Eq. 2 of the main manuscript. Full device transparency highlighted in bold.

Fig. S6. Optimisation of P1 on ITO. Laser reflectivity at 785 nm (a, b, c) and PL (d, e, f) maps of laser patterned ITO with different laser ablation power: 16 A (a, d), 18 A (b, e) and 20 A (c, f). The laser measurement excitation was set to 785 nm. The white scale bar corresponds to 30 μ m.

Fig. S7. Optimisation of laser patterning conditions. Microscope images of laser patterned lines with increasing laser excitation power, which results in an increase of the groove width (value inset in the pictures) for P1 (Glass/ITO), P2 (Glass/ITO/ETL/PAL/HTL) and P3

(Glass/ITO/ETL/PAL/HTL/PH1000). The rest of the laser parameters was fixed as mentioned in the experimental section. The central column corresponds to the optimized laser conditions with which modules were manufactured. The white scale bar corresponds to 50 μ m.

Fig. S8. Microscope image of the laser patterned organic films for photoactive layer thicknesses of 80, 120 and 140 nm. Scale bar is $50 \mu m$.

Fig. S9. JV characteristics of modules with 2, 3 and 4 mm cell length.

Fig. S10. Layout of the laser patterning design. (a) Photograph (5x5 cm) and (b) scheme of the modules layout with the detailed laser patterned grooves. The shown substrate on white background contains 4 different modules (M1-M4)

Fig. S11. Transversal image cross section of the normalized PL, 785 nm LBIC and whiteBIC maps for 2, 3 and 4 mm. L_{cell} module from Fig.5. Inset: whiteBIC maps with an arrow pointing the direction of the averaged cross section. The grey rectangle is a guide to identify the cell length.