Supporting Information

Atomically Thin Mesoporous NiCo₂O₄ Grown on Holey Graphene for

Enhanced Pseudocapacitive Energy Storage

Ding Yuan,^a Yuhai Dou, ^{*,a} Li Xu, ^b Linping Yu,^c Ningyan Cheng,^d Qingbing Xia,^d Luke Hencz,^a Jianmin Ma,^{e,f} Shi Xue Dou,^d Shanqing Zhang^{*,a}

^a Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, QLD 4222, Australia

^b Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang 212013, China

^c Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha 410114, China

^d Institute for Superconducting and Electronic Materials, University of Wollongong Australia, Wollongong 2500, Australia

^e School of Physics and Electronics, Hunan University, Changsha 410082, China

^f National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China

Figure S1. SEM images of HG prepared under different calcination conditions. a) 800 °C for

1 h. b) 900 °C for 2 h.

Figure S2. SEM images of atomically thin nanosheets. a) NiCo₂O₄. b) NiCo₂O₄-GE.

Figure S3. TGA of NiCo₂O₄, NiCo₂O₄-GE and NiCo₂O₄-HG. The initial 1.2% weight loss before 300 °C is attributed to the evaporation of moisture and the decomposition of crystal water in the precursor. The 4.5% weight loss in NiCo₂O₄ results from the carbonization of P123. As a result, the weight percentages of graphene in NiCo₂O₄-GE and NiCo₂O₄-HG are calculated as 13.6% - 4.5% = 9.1%.

Figure S4. Pore size distributions of NiCo₂O₄-HG and NiCo₂O₄-GE.

Figure S5. XPS survey spectra of HG, NiCo₂O₄, NiCo₂O₄-GE and NiCo₂O₄-HG.

Figure S6. Discharge–charge voltage profiles of NiCo₂O₄-HG at 0.2 C.

Figure S7. HR-STEM images of NiCo₂O₄-HG electrodes. a) Fully discharged state at 0.1 V. b)

Fully charged state at 3.0 V.

Figure S8. Discharge-charge voltage profiles of NiCo₂O₄-HG at different C-rates. a) NiCo₂O₄-HG. b) NiCo₂O₄-GE.

Figure S9. SEM images of NiCo₂O₄-HG during Li⁺ storage. a) after 5 cycles. b) after 50 cycles.

c) after 300 cycles.