Electronic Supplementary Information

A Promising Hydrogen Peroxide Adduct of Ammonium Cyclopentazolate as Green Propellant Components

Jin Luo⁺, Honglei Xia⁺, Wenquan Zhang,* Siwei Song, and Qinghua Zhang*

Table of Contents

1. Experimental Details	S2
2. Crystal Structure Data	
3. Computational methods	
4. Other Characterization Information	
5. References	

1 Experimental Procedures

Caution: Although no unexpected explosions and hazards were encountered during this work, small scale and best safety practices (explosion-proof baffle, face shield and leather gloves) are strongly encouraged.

General Methods: All chemicals from commercial sources were reagent grade and used as received without further purification. The ¹H NMR spectra was performed on a 400 MHz (Bruker AVANCE 400) by using CD₃OD as solvent and locking solvent. IR spectra was recorded by a Thermo Nicolet AVATAR 6700 spectrum instrument with KBr sheets. Thermal property measurements were performed on a TG/DSC Mettler Toledo calorimeter equipped with an auto cool accessory at a scan rate of 5 °C min⁻¹. The heats of formation and detonation properties were calculated with the Gaussian 09 and EXPLO5 (version 6.02) software, respectively. Single crystal X-ray diffraction data were collected using an Oxford Xcalibur 3 diffractometer with Cu-K α radiation ($\lambda = 0.154184$ Å).

Synthesis of NH₄N₅·½H₂O₂. [Na(H₂O)(N₅)]·2H₂O, AgN₅ and NH₄N₅ were prepared according to the published method.¹ NH₄N₅ (88 mg, 1.0 mmol) was added to a solution of hydrogen peroxide (30 wt%, 10 ml) to form a saturated solution and stirred at 25 °C for 6 hours. After slow solvent evaporation under room temperature (15-25 °C) for several days, the white-colored cuboid single crystals suitable for single crystal X-ray diffraction analysis were obtained. The yield of NH₄N₅·½H₂O₂ is 50 wt%. T_{d (onset)}: 99.5 °C. ¹H NMR (CD₃OD): δ = 10.66 ppm for H₂O₂ peak; IR (KBr): \tilde{v} = 1633, 1400, 1224 (s) cm⁻¹; elemental analysis calcd (%) for NH₄N₅·½H₂O₂: H 4.76, N 79.92%; found: H 4.82, N 79.90%.

Scheme S1. Synthesis of NH₄N₅·½H₂O₂.

2 Crystal Structure Data

Single crystal X-ray diffraction data was collected on an Oxford X calibur diffratometer with

Cu-K α monochromated radiation ($\lambda = 0.154184$ Å) at 150 K. The crystal structures were solved by direct methods. The structures were refined on F2 by full-matrix least-squares methods using the SHELXTL program package.² All non-hydrogen atoms were refined anisotropoically. Relevant crystal data and refinement results are summarized in Table S1.

Empirical formula	N ₆ H ₅ O	N ₆ H ₅ O
Formula weight	105.10	105.10
Temperature/K	150	295
Crystal system	monoclinic	monoclinic
Space group	$P 2_1/c$	$P 2_{1}/c$
<i>a</i> , Å	3.83966 (4)	3.9047 (8)
b, Å	13.19458 (13)	13.187 (9)
<i>c</i> , Å	9.19097 (9)	9.187 (3)
α, °	90	90
β, °	96.7349 (9)	96.30 (2)
γ, °	90	90
Volume, Å ³	462.426 (8)	470.2 (4)
Ζ	4	2
$D_{\rm c}$, g/cm ³	1.510	1.485
μ / mm^{-1}	1.164	1.144
F(000)	220.0	220.0
Crystal size / mm ³	$0.22\times0.2\times0.18$	$0.2\times0.18\times0.16$
Radiation/ Å	Cu K α (λ = 0.154184)	Cu Ka ($\lambda = 0.154184$)
2θ range for data collection [°]	11.79 to 154.494	11.788 to 155.394
Index ranges	-4 ≤h≤4, -16≤k≤16, -11≤l≤11	-4≦h≤2, -16≦k≤16, -11≤l≤11
Reflections collected	9425	6763
Independent reflections	975 [$R_{\text{int}} = 0.0338, R_{\theta} = 0.0149$]	973 [$R_{int} = 0.0427, R_{\theta} = 0.0224$]
Data / restraints / parameters	975 / 0 / 84	973 / 0 / 84
Goodness-of-fit on F^2	1.078	1.152
Final R indexes	$R_1 = 0.0309, wR_2 = 0.0806$	$R_1 = 0.0364, wR_2 = 0.0833$
Final R indexes [all data]	$R_1 = 0.0323, wR_2 = 0.0827$	$R_1 = 0.0432, wR_2 = 0.0982$
Largest diff. peak / hole / [e Å-3]	0.17 / -0.32	0.17 / -0.32
CCDC number	1977776	1999931

Table S1. Crystal data for NH_4N_5 · $\frac{1}{2}H_2O_2$ at different temperatures.

parameter	bond length (Å)	parameter	bond length (Å)
O(1)-O(1) ⁱ	1.4724 (13)	N(5)-N(1)	1.3180 (12)
N(2)-N(3)	1.3210 (11)	N(5)-N(4)	1.3201 (11)
N(2)-N(1)	1.3155 (11)	N(3)-N(4)	1.3172 (12)

Table S2. Selected bond distances for NH_4N_5 · $\frac{1}{2}H_2O_2$ at 150K.

Symmetry code: (i) 1-x, 1-y, 1-z.

Table S3. Selected bond angles for NH_4N_5 . $^{1/2}H_2O_2$ at 150K.

parameter	bond angle (°)	parameter	bond angle (°)
N (1)-N(2)-N(3)	107.92(8)	N(2)-N(1)-N(5)	108.03 (8)
N(1)-N(5)-N(4)	108.16(8)	N(3)-N(4)-N(5)	107.72 (7)
N(4)-N(3)-N(2)	108.17(7)		

Table S4. Selected torsion angles for NH_4N_5 · $\frac{1}{2}H_2O_2$ at 150K.

parameter	bond angle (°)	parameter	bond angle (°)
N(2)-N(3)-N(4)-N(5)	0.06(10)	N(1)-N(5)-N(4)-N(3)	0.04 (10)
N(3)-N(2)-N(1)-N(5)	0.16(11)	N(4)-N(5)-N(1)-N(2)	-0.12 (11)
N(1)-N(2)-N(3)-N(4)	-0.13(10)		

Table S5. Selected hydrogen bonds for NH_4N_5 . $^{1/2}H_2O_2$ at 150K.

parameter	bond length (Å)	parameter	bond length (Å)
O(1)-H(1)…N(1)	2.8113 (10)	N(6)-H(6) A…N(5)	2.9359 (11)
N(6)-H(6)B…N(2)	2.9622 (11)	N(6)-H(6)C…O(1)	2.8763 (10)
N(6)-H(6)D…N(3)	2.9757 (11)		

Fig. S2. Five types of hydrogen bonds in NH_4N_5 .¹/₂ H_2O_2 at 150K.

Fig. S3. The packing diagram of NH_4N_5 . $^{1/2}H_2O_2$ viewed along the c axis.

Fig. S4. The packing diagram of NH₄N₅ viewed along the c axis.

3 Computational methods

The heat of formation calculation: The theoretical calculations were performed by using the Gaussian 09 (Revision D.01) suite of scripts.³ There are two components (NH₄N₅ and hydrogen peroxide) in the molecule structure of NH₄N₅· $\frac{1}{2}$ H₂O₂. Herein, we consider it as a whole system to calculated the solid heat of formations (Δ_{f} H). The gas state heat of formation

of NH_4N_5 ·½ H_2O_2 was calculated by G4(MP2)_6x method. G4(MP2)_6x is a composite procedure with a lower cost but performance approaching that of G4. The solid-phase heat of formation can be calculated by the formula given in Equation (1):

$$\Delta H_{f} (\text{solid}, 298 \text{ K}) = \Delta H_{f} (\text{gas}, 298 \text{K}) - \Delta H_{\text{sub}}$$
(1)

where $\Delta H_{\rm L}$ is the heat of sublimation from gas-phase heat of formation. On the basis of the literature,³ the heat of sublimation can be estimated with Trouton's rule according to Equation (2):

$$\Delta H_{sub} = 188/J \cdot mol^{-1}K^{-1} \times T$$
(2),

where T represents either the melting point or the decomposition temperature when no melting occurs prior to decomposition.⁴

Table S6. The calculated enthalpies of $NH_4N_5 \cdot \frac{1}{2}H_2O_2$.

Compd.	$\Delta H_{\rm f}$ (gas, 298K) (kJ mol ⁻¹)	$\Delta H_{sub} (kJ mol^{-1})$	$\Delta H_{\rm f}$ (solid, 298K) (kJ mol ⁻¹ /kJ g ⁻¹)
$N_{12}H_{10}O_2$	527.72	70.03	457.69 / 2.178

4 Other Characterization Information

Fig. S5. Infrared spectra of NH_4N_5 . $\frac{1}{2}H_2O_2$, which indicates cyclo- N_5 ⁻ has an absorption peak in the IR band at 1224 cm⁻¹, which matches the reported vibrational peak at 1224 cm⁻¹.⁵

Fig. S6. SEM images of NH_4N_5 · $\frac{1}{2}H_2O_2$.

Fig. S7. ¹H NMR spectrum of NH_4N_5 ·¹/₂ H_2O_2 in CD_3OD .

Products	$NH_4N_5 \cdot \frac{1}{2}H_2O_2$	NH ₄ N ₅
Heat of isobaric combustion (kJ/kg)	-4432.14	-3054.78
Total enthalpy of combustion products (kJ/kg)	2177.62	3055.18
Entropy of combustion products (kJ/K kg)	11.61	11.15
gaseous combustion temperature (T_c , K)	2673.9	1970.5
Mole number of gaseous products (mol/kg)	52.437	56.75
Total mole number of products (mol/kg)	52.437	56.75
Volume of gaseous products (L/kg)	1299.85	1406.77
Mass of gaseous products (g/kg)	999.9	999.9

Table S7. Selected parameters of $NH_4N_5\cdot {}^1\!\!{}_2H_2O_2$ and NH_4N_5 in combustion chamber.

Products	mol (%)	Formula weight (g mol ⁻¹)	Average formula weight (g mol ⁻¹)
N_2	54.4357	28	15.241996
H_2	27.0739	2	0.541478
H ₂ O	18.0901	18	3.256218
Н	0.3353	1	0.003353
ОН	0.0509	17	0.008653
NH ₃	0.0077	17	0.001309
NO	0.0059	30	0.00177
0	0.0003	16	0.000048
O_2	0.0001	32	0.000032
Ν	0.0000	14	0
General average formula weight of Combustion products (\overline{M}_1)			19.05486

Table S8. Combustion products composition of $NH_4N_5\cdot {}^1\!\!{}^2H_2O_2$ in chamber.

Products	mol (%)	Formula weight	Average formula weight
N ₂	60.0003	28	16.800084
H_2	39.9547	2	0.799094
NH ₃	0.0345	17	0.005865
Н	0.0105	1	0.000105
Ν	0.0000	14	0
General average formula Weight of Combustion Products (\overline{M}_2)			17.60515

Table S9. Combustion products composition of $\rm NH_4N_5$ in chamber.

Table S10.	The values	of T_c/\overline{M}	of NH ₄ N ₅ · ¹ /2	$^{2}H_{2}O_{2}$ and $NH_{4}N_{4}$	5.
------------	------------	-----------------------	---	------------------------------------	----

Products	$T_{ m c}/\overline{M}$
NH ₄ N ₅ ·½H ₂ O ₂	140.3264
NH ₄ N ₅	111.9275

5 References

- [1] (a) Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang and M. Lu, *Nature*, 2017, 549, 78-81; (b)
 Y. Xu, L. Tian, D. Li, P. Wang and M. Lu, *J. Mater. Chem. A*, 2019, 7, 12468-12479.
- [2] G. M. Sheldrick, Acta. Crystallogr. Sect. A, 2008, 64, 112-122.
- [3] (a) H. Gao, C. Ye, C. M. Piekarski and J. M. Shreeve, J. Phys. Chem. C, 2007, 111, 10718-10731; (b) M. S. Westwell, M. S. Searle, D. J. Wales and D. H. Williams, J. Am. Chem. Soc. 1995, 117, 5013-5015.
- [4] C. Yang, C. Zhang, Z. Zheng, C. Jiang, J. Luo, Y. Du, B. Hu, C. Sun and K. O. Christe, J. Am. Chem. Soc. 2018, 140, 16488-16494.
- [5] C. Zhang, C. Sun, B. Hu, C. Yu and M. Lu, Science 2017, 355, 374-376.