Electronic Supplementary Information (ESI)

Solvent Vapour Annealing of Methylammonium Lead Halide Perovskite: What's the catch?

Onkar S. Game^a*, Joel A. Smith^a, Tarek I. Alanazi^a, Michael Wong-Stringer^a, Vikas Kumar^b, Cornelia Rodenburg^b, Nick J. Terrill^c and David G. Lidzey^a*

a. Department of Physics and Astronomy, University of Sheffield, Sheffield, U.K.

- b. Department of Material Science and Engineering, University of Sheffield, Sheffield, UK
- c. Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot Oxfordshire, U.K.

*Correspondane: o.game@sheffield.ac.uk, d.g.lidzey@sheffield.ac.uk

ESI Note 1: Pbl₂ crystallization

The crystallization behaviour of PbI₂ and its location in mixed-phase perovskite films is a matter of ongoing research within the field. Most of the reports using ACN/MA solvent system for PbI₂-excess compositions demonstrate the crystallization of PbI₂ as phase-separated grains or segregated regions in the films^{1, 2}. However, we believe that this behaviour is not specific to the ACN/MA solvent system. Some of the early reports on PbI₂ excess in MAPbI₃ claimed a uniform distribution of PbI₂ around grain boundaries³. However, recent reports on excess-PbI₂ in precursor solutions made with DMF/DMSO⁴⁻⁶ or GBL/DMSO⁷ solvents also showed crystallization of PbI₂ grains, distributed throughout the film. We believe that such differences could have their origin in different annealing temperatures and durations, solvent ratios, fabrication environment (air vs nitrogen) and occasionally in batch-to-batch variation.

References:

- D. P. McMeekin, S. Mahesh, N. K. Noel, M. T. Klug, J. Lim, J. H. Warby, J. M. Ball, L. M. Herz, M. B. Johnston and H. J. Snaith, *Joule*, 2019, **3**, 387-401.
- 2. A. J. Ramadan, N. K. Noel, S. Fearn, N. Young, M. Walker, L. A. Rochford and H. J. Snaith, *Chemistry of Materials*, 2018, **30**, 7737-7743.
- C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel and M. K.
 Nazeeruddin, *Energy & Environmental Science*, 2015, 8, 3550-3556.
- 4. J.-a. Yang, A. Xiao, L. Xie, K. Liao, X. Deng, C. Li, A. Wang, Y. Xiang, T. Li and F. Hao, *Electrochimica Acta*, 2020, **338**, 135697.
- 5. J. Euvrard, O. Gunawan and D. B. Mitzi, *Advanced Energy Materials*, 2019, **9**, 1902706.
- N. Pant, A. Kulkarni, M. Yanagida, Y. Shirai, T. Miyasaka and K. Miyano, *Advanced Materials Interfaces*, 2019, 7, 1901748.
- J. Chang, H. Zhu, J. Xiao, F. H. Isikgor, Z. Lin, Y. Hao, K. Zeng, Q.-H. Xu and J. Ouyang, *Journal of Materials Chemistry A*, 2016, 4, 7943-7949.

Fig S1 (a) and **(b)** show histogram of pixel frequency vs photocurrent for Pb-NVA and Pb-VA pc-AFM map in Fig 1(b) and (d) respectively. Inset of Fig S1 (b) shows the magnified view of Pb-VA histogram indicating presence of pixels (regions/grains) with photocurrent magnitude higher than 1 nA.

Fig S2 The total areas occupied by grains showing brighter contrast (highlighted in yellow) than surrounding grains in SEM images (with a total area of 8.02 μ m²) were calculated using ImageJ software. These bright contrast PbI₂-rich grains occupied ~ 0.22 μ m² area in the SEM image of (a) Pb-NVA (3% of the surface) which on solvent vapour annealing increased to ~ 1.04 μ m² for (b) Pb-VA (13% of the surface).

Fig S3 (a) shows the SEM of PbI₂ excess solvent vapour annealed (Pb-VA) film. Representative grains with dark and bright contrast are marked in red and yellow circles respectively. (b) shows the point EDS spectra of Pb-VA film at two locations marked red and yellow in (a).

Fig S4 (a) and **(c)** shows the contact mode AFM (height profile) for MA-NVA and MA-VA films $10 \ \mu m \times 10 \ \mu m$ scan; **(b)** and **(d)** show photocurrent maps ($10 \ \mu m \times 10 \ \mu m$) simultaneously acquired with topography using pc-AFM under illumination for Pb-NVA and Pb-VA respectively.

Fig S5 (a) and **(b)** show histogram of pixels vs photocurrent in pc-AFM map (Fig 3 (b), (d)) for MA-NVA and MA-VA films respectively.

Fig S6 (a) XRD of as spin cast MAI excess MAPbI₃ without any thermal or solvent treatment. **(b)** Normalized (110) XRD peak of MA-NVA and MA-VA showing reduced FWHM in MA-VA implying grain growth post solvent vapour annealing.

Fig S7 (a) XRD of PbI_2 -excess and MAI-excess compositions with and without solvent vapour annealing. **(b)** SEM of $.PbI_2$ -excess and MAI-excess compositions with and without solvent vapour annealing. In all cases, the scale bar represents 1 μ m.

Fig S8 Grazing incidence (1.5°) wide angle X-ray scattering 2D patterns collected for a) Pb-NVA, b) Pb-VA, c) MA-NVA and d) MA-VA films. Here, scatter from PbI_2 is indicated by a white arrow in the PbI_2 excess samples. The red arrow shows additional weakly scattering features at low Q (or low 2 θ) for Pb-VA.

Fig S9 (a) Schematic of the reduction of the 2D detector scattering patterns to a radial profile of azimuthally integrated intensity data (integrated for all χ as a function of Q), also known as a 'cake remapping'. (b) 1D radial profiles for all samples obtained after azimuthal integration of 2D patterns in Fig S8 (a) – (d). Inset shows the magnified view of 1D radial profile in the range of Q = 0.4 to 0.95 Å⁻¹ (equivalent to 2 θ = 5.6° to 13.5°).

Fig S10 (a) Extended accumulation grazing incidence (0.5°) wide angle X-ray 2D scattering pattern of PbI₂ excess solvent vapour annealed film. (b) 1D radial profile of 2D pattern in the range of Q = 0.2 to 0.95 Å⁻¹, showing crystalline PbI₂ and additional peaks at low Q marked with asterisks (*). These features were no longer present after overnight storage in ambient air, as shown in the radial profile for an aged sample (red). We also observed a small increase in the PbI₂ scattering signal; a finding consistent with our proposed mechanism shown in Fig 9 of the main paper.

Composition	Device code	Scan	Voc (V)	Jsc (mA/cm ²)	FF(%)	Eff(%)
Pb excess	Pb-NVA	Fw	1.06	20.30	57.2	12.3
		Rev	1.07	20.40	73.6	16.0
Pb excess	Pb-VA	Fw	1.01	20.32	33.7	6.91
		Rev	1.06	20.18	74.1	15.8
Stoichiometric	MAPI-NVA	Fw	1.06	20.7	70.5	15.5
		Rev	1.07	20.7	77.2	17.1
Stoichiometric	MAPI-VA	Fw	1.03	20.54	64.2	13.6
		Rev	1.05	20.51	76.3	16.4
MAI-excess	MA-NVA	Fw	1.10	20.98	70.2	16.2
		Rev	1.10	21.00	77.2	17.8
MAI-excess	MA-VA	Fw	1.07	20.93	71.0	15.9
		Rev	1.09	20.91	77.8	17.7

Table S1 Photovoltaic parameters of best devices for each case. –NVA and –VA stand for non-vapour annealed and vapour annealed respectively. Pb-, MA- and MAPI- compositions correspond to lead excess, MAI excess and stoichiometric MAPbI₃ respectively.

Fig S11 J-V curves of stoichiometric (MAI:PbI₂ = 1:1) MAPbI₃ based devices (a) without and (b) with solvent-vapour annealing.

Fig S12 Reverse and forward scan statistic of lead excess (Pb-), stoichiometric (MAPI-) and MAI excess (MA-) compositions in planar architecture without (-NVA) or with (-VA) solvent vapour annealing. Horizontal line in the box shows the median value.

Fig S13 (a) Photograph of moisture chamber that was used to study degradation using *in situ* GIWAXS measurements on perovskite films. The chamber walls were composed of a thick Kapton film that is transparent to X-rays. (b) Schematic of the *in situ* GIWAXS measurements performed at the Diamond Light Source I22 synchrotron beamline with an X-ray beam energy set at 10 keV. Here the beam was incident at 0.3° with scattered X-rays detected using a Pilatus P3-2M detector.

Fig S14 Continuous illumination device lifetime (PCE vs time) of Pb-excess solvent vapour annealed (Pb-VA) composition without (black) and with (green) 150 nm SiO₂ encapsulation.

Fig S15 Composition dependence of continuous illumination device lifetimes (PCE vs time) (a) without and (b) with solvent vapour annealing. Compositions are abbreviated as Pb-excess (Pb-), Stoichiometric (MAPI-) and MA-excess (MA-).

Fig S16 Representative device cross-section of 6% PbI_2 -excess (Pb-NVA) device before subjecting to 120 hrs lifetime testing. The grain structure within the perovskite film is well defined, with grain sizes ranging from 100 – 300 nm. Scale bar is 500 nm.

Fig S17 Cross-sectional SEM images of MA-NVA and MA-VA on a wide scale (Scale bar: 4 μ m). MA-NVA did not show any voids at the ETL-perovskite interface, implying good mechanical contact between the perovskite film and ETL. This behaviour persisted even after solvent vapour annealing as evident from the cross-sectional SEM of MA-VA.

Scheme S18: Degradation pathways in PbI₂-excess perovskite devices under illumination^{8, 9}

1. Under illumination, the excess PbI₂ undergoes photodecomposition process according to

excess
$$PbI_2 \xrightarrow{h\vartheta} Pb(0) + I_2(g)$$

2. Iodine gas formed in process 1 undergoes atomic iodide generation⁶ under illumination

 $I_2 \xrightarrow{h\vartheta} 2I^\circ$

3. Atomic iodine reacts with mobile iodide species (I⁻) from MAPbI₃

 $2I^{-} + 2I^{\circ} \xrightarrow{h\vartheta} 2I^{\circ}_{2}^{-}$

4. Mobile MA+ (CH₃NH₃+) ions react with I^{ν_2} species to form gaseous methylamine (CH₃NH₂), iodine (I₂) and hydrogen (H₂)

$$2CH_3NH_3^+ + 2I_2^{\circ} \xrightarrow{h\vartheta}{\rightarrow} 2CH_3NH_2 + 2I_2 + H_2$$

References for Scheme S18:

8 E. J. Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash and Y. Qi, *Journal of Materials Chemistry A*, 2018, **6**, 9604-9612.

9. S. Wang, Y. Jiang, Emilio J. Juarez-Perez, Luis K. Ono and Y. Qi, *Nat Energy*, 2016, **2**, 16195.