Ligand modification of Cu₂ZnSnS₄ nanoparticles boosts the performance of low temperature paintable carbon electrode based perovskite solar cells to 17.71%

Yang Cao^a, Weiwei Li^b, Zhen Liu^a, Zhiqiang Zhao^a, Zhenyu Xiao^a, Wei Zi^a, Nian Cheng^a*,

^a Energy-Saving Building Materials Collaborative Innovation Center of Henan Province, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, China

^b College of Physics and Electronic Engineering, Xinyang Normal University, 237

Nanhu Road, Xinyang, 464000, China

*Corresponding author

Email: chengnian@foxmail.com

Fig. S1. High resolution core XPS spectra of (a) Cu 2p, (b) Zn 2p, (c) Sn 3d, (d) S 2p, and (d) N 1s for p-CZTS and m-CZTS nanoparticles.

Fig. S2. Energy band diagram of the perovskite solar cells. The band levels of FTO, SnO_2 , MAPbI₃, Cu_2ZnSnS_4 and Carbon are extracted from references[1, 2].

Fig. S3. Cross sectional SEM image of a typical p-CZTS film deposited on MAPbI₃. The thickness of p-CZTS film is estimated to be 160 nm.

Fig. S4. XRD patterns for MAPbI₃ film, MAPbI₃/p-CZTS film, and MAPbI₃/m-CZTS film.

Fig. S5. Stability test of perovskite, perovskite/p-CZTS, and perovskite/m-CZTS films immersed into deionized water. It can be seen from the above figures that bare perovskite film is unstable to water intrusion, and the dark brown perovskite film turns to yellow instantly when immersed into water. When a thin p-CZTS layer is deposited onto the perovskite film, the perovskite/p-CZTS film is more robust and starts to turn yellow after 4 s in the water. When a thin m-CZTS layer is deposited onto the perovskite/m-CZTS film remains dark brown color for 5 min in the water. This simple test demonstrates that the m-CZTS film can protect the perovskite film from water degradation, and therefore ensures better device stability of the corresponding perovskite solar cell.

Fig. S6. Statistical photovoltaic parameters (a) V_{oc} , (b) J_{sc} , (c) FF, and (d) PCE for FAPbI₃ perovskite solar cells employing both p-CZTS and m-CZTS hole transporting layer.

Fig. S7. Typical J-V curves for FAPbI₃ perovskite solar cells employing both p-CZTS and m-CZTS hole transporting layers.

Sample	Element	Area (N)	Atomic	Atomic
			percentage (%)	percentage (%)
_			without N	with N
	Cu 2p3	1926.95	21.5	20.0
	Zn 2p3	688.36	7.7	7.2
p-CZTS	Sn 3d	1320.73	14.7	13.7
-	S 2p	5025.42	56.1	52.3
	N 1s	650.05		6.8
	Cu 2p3	2338.53	22.8	21.8
	Zn 2p3	795.19	7.7	7.4
m-CZTS	Sn 3d	1453.93	14.1	13.6
	S 2p	5697.46	55.4	53.1
	N 1s	438.03		4.1

Table S1. Atomic percentages calculated from the XPS measurement.

Table S2. Statistical photovoltaic parameters (a) V_{oc} , (b) J_{sc} , (c) FF, and (d) PCE for FAPbI₃ perovskite solar cells employing both p-CZTS and m-CZTS hole transporting layer. The average and standard deviation are calculated from 15 samples for each kind of perovskite solar cells.

	$V_{oc}(V)$	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
p-CZTS	1.058 ± 0.021	22.87 ± 0.78	62.61±2.16	15.14±0.59
m-CZTS	1.078 ± 0.014	23.16±0.41	68.76±1.59	17.16±0.35

Table S3. Summary of power conversion efficiencies for perovskite solar cells employing a hole transporting layer and carbon electrode. Preparation method for each hole transporting layer and carbon electrode is also given in the parenthesis.

Hole transporting layer	Carbon electrode	Champion PCE	Reference
Spiro-OMeTAD	Single-walled carbon nanotube	16.6%	[3]
(Spin-coating + Drop-casting)	(Press-transfer)		
Spiro-OMeTAD	Modified commercial carbon paste	19.2%	[4]
(Spin-coating)	(Press-transfer)		
Spiro-OMeTAD	Graphene	18.65%	[5]
(Spin-coating)	(Spraying + Press)		
CuPc	Commercial carbon paste	16.1%	[6]
(thermal evaporation)	(Doctor-blading)		
CuPc	Commercial carbon paste	17.46%	[7]
(thermal evaporation)	(Doctor-blading)		
CuPc-TIPS	Commercial carbon paste	14.0%	[8]
(Spin-coating)	(Doctor-blading)		
CuSCN	Multi-walled carbon nanotube	17.58%	[9]
(Spin-coating)	(Drop-casting)		
Cu_2ZnSnS_4	Modified Commercial carbon paste	17.71%	Our work
(Spin-coating)	(Doctor-blading)		

References:

[1] M. Yuan, X. Zhang, J. Kong, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S. Wu, D. Kou, Controlling the Band Gap to Improve Open-Circuit Voltage in Metal Chalcogenide based Perovskite Solar Cells, Electrochimica Acta, 215 (2016) 374-379.

[2] P.-K. Kung, M.-H. Li, P.-Y. Lin, Y.-H. Chiang, C.-R. Chan, T.-F. Guo, P. Chen, A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells, Advanced Materials Interfaces, 5 (2018) 1800882.

[3] K. Aitola, K. Domanski, J.-P. Correa-Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E. M. J. Johansson, W. Tress, A. Hagfeldt, G. Boschloo, High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact, Advanced Materials, 29 (2017) 1606398.

[4] H. Zhang, J. Xiao, J. Shi, H. Su, Y. Luo, D. Li, H. Wu, Y.-B. Cheng, Q. Meng, Self-Adhesive Macroporous Carbon Electrodes for Efficient and Stable Perovskite Solar Cells, Advanced Functional Materials, 28 (2018) 1802985.

[5] C. Zhang, S. Wang, H. Zhang, Y. Feng, W. Tian, Y. Yan, J. Bian, Y. Wang, S. Jin, S. M. Zakeeruddin, M. Grätzel, Y. Shi, Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design, Energy & Environmental Science, (2019).

[6] F. Zhang, X. Yang, M. Cheng, W. Wang, L. Sun, Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode, Nano Energy, 20 (2016) 108-116.

[7] X. Liu, Z. Liu, B. Sun, X. Tan, H. Ye, Y. Tu, T. Shi, Z. Tang, G. Liao, 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Nidoped rutile TiO₂ as electron transport layer, Nano Energy, 50 (2018) 201-211.

[8] X. Jiang, Z. Yu, H.-B. Li, Y. Zhao, J. Qu, J. Lai, W. Ma, D. Wang, X. Yang, L. Sun, A solution-processable copper(ii) phthalocyanine derivative as a dopant-free hole-transporting material for efficient and stable carbon counter electrode-based perovskite solar cells, Journal of Materials Chemistry A, 5 (2017) 17862-17866.

[9] X. Wu, L. Xie, K. Lin, J. Lu, K. Wang, W. Feng, B. Fan, P. Yin, Z. Wei, Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface of CuSCN and carbon nanotubes, Journal of Materials Chemistry A, 7 (2019) 12236-12243.