Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Zero-dimensional Heterostructures: N-Doped Graphene Dots/SnO₂ for Ultrasensitive and

Selective NO₂ Gas Sensing at Low Temperatures

Rahul Purbia^a, Yeong Min Kwon^b, Hong-Dae Kim^c, Yun Sik Lee^d, Heungjoo Shin^e, and Jeong

Min Baik^a*

^aSchool of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU),2066 Seoburo, Suwon 16419, South Korea E-mail: jmbaik97@gmail.com

^bSchool of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.

^cGreen Materials and Processes Group, Korea Institute of Industrial Technology (KITECH), Ulsan, 44413, Republic of Korea.

^dSchool of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.

eSchool of Mechanical Engineering,

Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.

Figure S1 HR-TEM image and size distribution of N-doped graphene dots obtained in the area.

Figure S2 (a-b) TEM image (inset of b SAED pattern), (c) HR-TEM images with size distribution of pristine $SnO_2 NPs$, (d-g) STEM-EDS mapping of Sn, O, C elements (Scale bar of (a-b) 50 nm, (c) 5 nm, (d-g) 1 μ m.)

Figure S3 XRD spectra of pristine SnO₂ and N-GDs-SnO₂

Figure S4 Raman spectra of pristine SnO₂ and N-GDs-SnO₂.

Figure S5 FT-IR spectra of pristine SnO₂ and N-GDs-SnO₂.

Figure S6 UV-vis spectra of pristine SnO_2 and N-GDs-SnO₂.

Figure S7 I-V characteristics of pristine SnO₂ and N-GDs-SnO₂ at room temperature with schematic interface.

Table S1: Calculated sensing response, Response time, recovery time of $P-SnO_2$ and $N-GDs-SnO_2$.

	P-SnO ₂			N-GDs-SnO ₂		
Temp.	Response time (min)	Recovery time (min)	Response (R_g/R_a)	Response time (min)	Recovery time (min)	Response (R_g/R_a)
Room	26	NO	NO	27.3	more than 120 min	419
50	21	6	1	8.8	6.4	4336
100	15	35	4	7.8	3.2	2746
150	9	8.2	6	3.1	0.81	292
200	6	3.11	6	3.5	0.80	53
250	2.8	0.79	3	2.8	0.75	5

Figure S8 (a) NO₂ gas sensing characteristics with different N-GDs mixing ratio (0.5 % (50 μ l), 1 % (100 μ l), 2 % (200 μ l), 3 % (300 μ l), 4 % (400 μ l), 5 % (500 μ l), 6 % (600 μ l)) with 10 ml SnO₂ composites and tested sensing device at 150°C towards 100 ppb NO₂, (b) the average response of NO₂ gas sensing as a function of different N-GDs concentration.

Figure S9 Selectivity of N-GDs-SnO₂ towards 1 ppm (a) H₂S, (b) SO₂ (c) CO (d) NH₃ gases.

Figure S10 long term stability N-GD–SnO₂ sensor after 150 days at 150°C towards 100 ppb

NO₂.

Figure S11 (a) Gas response of N-GD–SnO₂ sensor toward 100 ppb NO₂ as a function of relative humidity from 0 to 95 %.

Figure S12 gas sensing mechanism of pristine SnO₂.

Figure S13 XPS spectra of N-GDs-SnO₂ (a) before and (b) after NO₂ exposure at room temperature.