Supplementary Information

Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric

textile-based wearable heater with exceptional electrothermal and photothermal

conversion performance

Xiaoya Liu^{a#}, Xiuxiu Jin^{b#}, Lei Li^a, Jianfeng Wang^{a, c}*, Yanyu Yang^a, Yanxia Cao^a, Wanjie Wang^a*

- ^a College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
- ^b Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- ^c The State Key Laboratory of Polymer Materials Engineering, Polymer Research, Institute of Sichuan University, Chengdu 610065, China

[#] XY Liu and XX Jin contribute equally to this work.

^{*} To whom correspondence should be addresses. (Prof. Wang, Email: jfw@zzu.edu.cn, Fax:86-0371-67781590)

^{*} To whom correspondence should be addresses. (Prof. Wang, Email: wwj@zzu.edu.cn, Fax: 86-0371-67781590)

Fig. S1 Schematic illustration of the process for etching Ti₃C₂Tx MXene.

Fig. S2 Digital images of sample after sterilization: a) pristine textile and b) M-textile.

Fig. S3 SEM images of a) pristine textile, b) M-textile-17.3, c), d) and e) M-textile-4.7 at low and high magnification, respectively.

Fig. S4 ATR-IR spectra of the $Ti_3C_2T_x$, pristine textile, M-textile with different MXene content, respectively.

Fig. S5 Digital images of the mechanical washing process of M-textile-17.3.

Fig. S6 SEM images of a) pristine textile, b) M-textile-4.7, and c) M-textile-17.3 at high magnification.

Fig. S7 a) Thermal diffusivity and b) thermal conductivity of pristine textile and M-textile with different MXene content, respectively.

Original state Stretch		Bending	Twist	Friction		
5 6 7 8 9 10 11	1 5 6 7 8 9 10 11 1			3 3 4 8 9 7 8		
Digital image						
Thermal infrared image	★ 1 49 °C		150°C	150 147 °C		

Fig. S8 Joule heating performance of M-textile-17.3 in the state of stretch (~120%), bending, twist or after one thousand time of friction on a paper.

Fig. S9 Electrical heating performance (temperature rise curve and IR image at saturated temperature) of M-textile-17.3 textile at 3V before and after machine washing for 100 minutes.

Fig. S10 Schematic diagram of electric heating deicing device based on M-textile.

Fig. S11 Digital image of deicing process without applying voltage.

Fig. S12 IR images of straight and bended figures wrapped with M-textile and pristine textile during FIR light irradiating at a distance of 20 cm.

Fig. S13 IR images of the M-textile-17.3 after shading the sunlight at different time: a) 12 AM, b) 3 PM and c) 5 PM (May 2, Zhengzhou, China).

Fig. S14 IR images of a) 1st and b) 20th cyclic photothermal conversion performance of M-textile-17.3 including exposing to sunlight (2 min) and then shading sunlight (2 min) at 12 AM.

Fig. S15 IR images of the M-textile-17.3 exposed to sunlight at 12 AM a) before and b) after machine washing of 100 minutes.

Fig. S16 IR images of a pen wrapped with M-textile-17.3 irradiated by sunlight at 12 AM.

Fig. S17 Digital images of the combustion process at different time of a) M-textile-6.7 and b) M-textile-12.3.

Fig. S18 Digital images of textiles after burning: a) M-textile-6.7, b) M-textile-12.3 and c) M-textile-17.3, respectively.

Fig. S19 TG curves of pristine textile and M-textile with different MXene content, respectively.

textile-4.7.

Fig. S21 The antibacterial mode of M-textile.

Heaters	Filler	Matrix	Sheet resistance (Ω sq ⁻¹)	Conductivity (S m ⁻¹)	Voltage (V)	Temperature (°C)	Ref.
	CuZr Metallic glasses	PDMS	4	/	7	180	2
	AgNW	PVA	26	/	5	74	3
	AgNW	Alumina	15	/	6	98	7
	CuNi MESH	PES	/	/	6	150	8
	Graphene		/	/	3.2	42	50
Film-	Liquid-metal	PDMS	/	1.81×10 ⁶	3.5	95.9	49
based	CNT	TPU	/	142.6	6	65	44
	AgNW/ SWCNT	PDMS	/	/	5	87	45
	AgNW	Aramid Nanofibers	3.2	/	5	103.5	46
	CNT/FC	Aramid Nanofiber	/	230	10	113.5	47
	MWCNT		699	/	15	77	48
Textile- based	CuNW	PE Microfibers	2.5	/	3	57	1
	CNT Fiber		/	7.4×10 ⁵	5	135	5
	PEDOT	Cotton	61	/	6	45	10
	MXene-PPy	PET	/	1000	4	79	20
	Conductive Weft-knitted Fabric		1.89	/	3.5	140	51
	CNT Fiber	••••••	/	110	1.5	47	52
	Silica NP/PDMS /AgNW	Cotton	2.8~4	/	0.5	34.1	53
	Ag/Ni _{0.33} Co _{0.67} Se/PDMS /rGO	Woven Kevlar Fiber	/	/	2.1	79	54
	MXene	РЕТ	19.7	117	3.5	174	This work

Table S1 Comparison of heating performance of the recently reported textile- and film-basedwearable heaters. The references in this table correspond to those in the manuscript.