Supplementary information

Carbon phosphides: promising electric field controllable nanoporous

materials for CO₂ capture and separation

Sainan Zhou^{a†}, Maohuai Wang^{a†}, Jiahui Wang^a, Huili Xin^b, Siyuan Liu^{a*}, Zhaojie Wang^a, Shuxian Wei^b, Xiaoqing Lu^{a*}

^a School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

^b College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

* Corresponding authors: Siyuan Liu and Xiaoqing Lu

[†] These authors made an equal contribution to this work.

E-mail address: lsy@upc.edu.cn and luxq@upc.edu.cn

Demonster	PC _{0.33}			PC ₆			
Parameter	PC _{0.33}	Ref. 1	Error	PC ₆	Ref. 2	Error	
P-P (Å)	2.30	2.28	0.87%				
P-C (Å)	1.79	1.78	0.56%	1.82	1.81	0.55%	
Average C–C (Å)				1.43	1.41	1.39%	
Thickness (Å)	1.44	1.31	9.00%	2.19	2.14	2.28%	

Table S1 Comparison of PC_n structural parameters between this work and previous literature.

	PC _{0.33}	PC_1	PC ₂	PC ₃	PC ₅	PC ₆
Our work	4.12	5.27	6.14	6.45	6.93	7.05
Previous work	4.181	5.28 ²	6.05 ²	6.45 ²	6.82 ²	6.97 ²
Error	1.45%	0.90%	1.47%	0.00%	1.59%	1.13%

Table S2 Comparison of cohesive energies of PC_n between our work and previous literature.

	PC _{0.33}	PC_1	PC ₂	PC ₃	PC ₅	PC ₆
P-P (Å)	2.30	2.29	2.28		2.13	
P-C (Å)	1.79	1.80	1.83	1.83	1.84	1.82
Average C–C (Å)		1.37	1.41	1.41	1.44	1.43
Thickness (Å)	1.44	2.32	1.81	0.69	1.89	2.19

Table S3 The optimized bond lengths (Å) of six $\ensuremath{\text{PC}}_n$ structures.

Fig. S1 Snapshots of PC_5 at the equilibrium state in the electric field of (a) 0 a.u., and (b) 0.0030 a.u. with 5 ps MD simulations.

Fig. S2 The electron density distribution of their most stable adsorption configurations of $CO_2/N_2/H_2O$ on $PC_{0.33}$ and PC_5 without an electric field. The isovalue of electron density distribution is 0.3 e/Å³.

Fig. S3 The cohesive energy changes with the number of adsorption/desorption cycles.

Fig. S4 Energy change of maximum CO_2 adsorption capacity on PC_5 with an electric field of 0.0030 a.u.: (a) adsorption process, (b) desorption process.

Fig. S5 Energy change of capture process of physisorbed CO_2 on PC_{033} (a) with the electric field switching on and release process of chemisorbed CO_2 from $PC_{0.33}$ (b) with the electric field switching off.

References

- 1. Z. Zhao, T. Yu, S. Zhang, H. Xu, G. Yang and Y. Liu, J. Mate. Chem. A, 2019, 7, 405-411.
- T. Yu, Z. Zhao, Y. Sun, A. Bergara, J. Lin, S. Zhang, H. Xu, L. Zhang, G. Yang and Y. Liu, J. Am. Chem. Soc., 2019, 141, 1599–1605.