Supporting Information

Engineering Mo/Mo₂C/MoC Hetero-interfaces for Enhanced

Electrocatalytic Nitrogen Reduction

Ying Liu,^{†a} Xiaorong Zhu,^{†a} Qinghua Zhang,^c Tang Tang,^{b,d} Yun Zhang,^{b,d} Lin Gu,^c Yafei Li,^a Jianchun Bao,^a Zhihui Dai,^{*a} Jin-Song Hu,^{*b,d}

^a Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

^b Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^c Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

^d University of the Chinese Academy of Sciences, Beijing 100049, China

[†] These authors contributed equally to this work.

Corresponding Author <u>*hujs@iccas.ac.cn</u> <u>*daizhihuii@njnu.edu.cn</u>

Figure S1. (a) Low- and (b) high-magnification SEM images, (c) EDS profile and (d) XRD pattern of the Mo-containing precursor.

Figure S2. XRD patterns for MoC, Mo₂C, Mo_xC, Mo/Mo_xC and Mo samples.

Figure S3. (a) TEM and (b) nanoparticles diameter distribution histogram for the Mo₂C sample.

Figure S4. (a) SEM, (b) TEM and (c) high-magnification TEM, (d) XRD pattern and (e) EDS mapping images for the MoO_xC_y intermediate.

Figure S5. TGA profiles of (a) MoO_xC_y intermidate obtained from the annealing of polymer precursor at 650 °C, and (b) Mo/Mo_xC product obtained from the further annealing of MoO_xC_y at 1000 °C under N₂ flow.

In Figure S5a, the initial weight loss below 150 °C is ascribed to water evaporation. With the temperature gradually increases, the polymer precursor starts to decomposition along with the formation of MoO_xC_y . When the temperature exceeds 550 °C, a quick weight loss is observed due to the combustion of carbon. The remaining weight after heating to 650 °C is about 71%. In Figure S5b, solid state reaction between MoO_xC_y and carbon occurs accompanied by the carbonization and reduction, generating and releasing CO_x .

Figure S6. (a) TEM (b) HRTEM (c) nanoparticles size distribution histogram and (d) XRD pattern for the metallic Mo sample.

Figure S7. (a) Wide-scan survey, and (b) high-resolution C 1s XPS spectra for the Mo/Mo_xC sample.

Valence state	BE (eV)	FWHM	Area
Мо	228.0	0.68	11050.20
	231.2	0.85	9027.76
Mo^{2+}	228.3	0.88	16508.61
	231.5	1.15	14053.62
Mo^{4+}	229.2	1.74	8284.90
	232.3	1.10	3841.25
Mo^{6+}	233.2	1.53	4348.37
	235.5	1.60	3468.00

Table S1. Fitting parameters for Mo signals in Mo/Mo_xC

Based on the fitted peak area of Mo and the total peak area of Mo 2p, the content of metallic Mo can be calculated as:

$$\frac{peak area of Mo}{total peak area of Mo 2p} = 0.28$$

Figure S8. Nanoparticles diameter distribution histogram for the Mo/Mo_xC sample.

Figure S9. Selected area electron diffraction image for the Mo/Mo_xC sample.

Figure S10. STEM images for the Mo/Mo_xC sample.

As shown in Figure S10, it is observed that nanoparticles are composed of different types of lattice fringes which can be indexed to MoC, Mo₂C, and metallic Mo, indicating the formation of heterostructured Mo/Mo_xC. Moreover, massive atomic deficiencies, grain boundaries and dislocations are also observed, especially on the heterogeneous interfaces.

Figure S11. Nanoparticles diameter distribution histogram for the Mo_xC sample.

Figure S12. (a) Chronoamperometry curves and (b) UV-vis absorption spectra at each given potential for the Mo/Mo_xC catalyst measured in 0.1 M Na₂SO₄ (the calibration curve used herein is y=0.035x+0.0387).

Figure S12a shows the chronoamperometric curves of the Mo/Mo_xC catalyst. The current density increases in sequence as the applied potential increases from -0.2 V to -0.5 V (vs. RHE). Figure S12b shows the corresponding UV-Vis absorption spectra. The peak intensity at about 655 nm increases as the potential decreases from -0.5 V to -0.3 V, indicative of the increased NH₃ yield.

Figure S13. LSV curves recorded in N₂- and Ar-saturated electrolyte for the Mo/Mo_xC catalyst.

Figure S14. (a) UV-vis absorption spectra of 0.1 M Na_2SO_4 electrolyte with various N_2H_4 concentrations. (b) Calibration curve used for the calculation of N_2H_4 concentrations.

Figure S15. UV-vis absorption spectra of the electrolytes estimated by the Watt and Chrisp method for (a) Mo/Mo_xC , (b) Mo_xC , (c) metallic Mo, and (d) Mo_2C catalyst at different potentials.

Figure S16. Chronoamperometric stability test (at -0.3 V vs. RHE) for the Mo/Mo_xC catalyst.

Figure S17. UV-vis absorption spectra of the cathode electrolytes stained with indophenol indicator after 2 h potentiostatic test at -0.3 V (vs. RHE) in 0.1 M Na₂SO₄ for bare carbon cloth measured in N₂-saturated atmosphere and carbon cloth with the Mo/Mo_xC catalyst measured in Ar- and N₂-saturated atmosphere.

Figure S18. CV curves of (a) Mo/Mo_xC , (b) Mo_xC , (c) Mo, and (d) Mo_2C catalysts measured at scan rates from 20 to 200 mV s⁻¹.

N₂-saturated 0.1 M Na₂SO₄ at a potential of -0.3 V (vs. RHE).

Catalyst	NH ₃ yield rate	FE	electrolyte	Ref.
		(%)		
MoS ₂ /CC	$4.94 \ \mu g \ h^{-1} \ cm^{-2}$	1.17	0.1 M	Adv. Mater., 2018, 30,
	(-0.5 V vs. RHE)		Na_2SO_4	1800191.
Mo ₂ C/C	11.3	7.8	0.5 M	Adv. Mater., 2018, 30,
	(-0.3 V vs. RHE)		Li_2SO_4	1803694.
MoO ₃	29.43	1.9	0.1 M HCl	J. Mater. Chem. A, 2018, 6,
nanosheet	(-0.5 V vs. RHE)			12974.
(110)-oriented	3.09 x 10 ⁻¹¹ mol s ⁻¹	0.72	$0.5 \ M \ H_2 SO_4$	J. Mater. Chem. A, 2017, 5,
Mo	cm ⁻² (-0.49 V vs.			18967.
	RHE)			
SA-Mo/NPC	$34.0 \pm 3.6 \ \mu g \ h^{-1} \ mg^{-1}$	14.6	0.1 M KOH	Angew. Chem. Int. Ed,
	(-0.3V vs. RHE)	±1.6		2019, 58, 2321.
Au nanorod	$1.648 \ \mu g \ h^{-1} \ cm^{-2}$	4.02	0.1 M KOH	Adv. Mater., 2017, 29,
	(-0.2V vs. RHE)			1604799.
Au/CeO _x -RGO	8.3 μg h ⁻¹ mg ⁻¹	10.10	0.1 M HCl	Adv. Mater., 2017, 29,
hybrid	(-0.2 V vs. RHE)			1700001.
Pd _{0.2} Cu _{0.8} /rGO	$2.80 \ \mu g \ h^{-1} \ mg^{-1}$	\sim	0.1 M KOH	Adv. Energy Mater., 2018,
composite	(-0.2 V vs. RHE)			8, 1800124.
Ru@ZrO ₂ /NC	$3.7 \text{ mg h}^{-1} \text{ mg }_{Ru}^{-1}$	21	0.1 M HCl	Chem, 2019, 5, 204-214.
	(-0.21 V vs. RHE)			
Bi ₄ V ₂ O ₁₁	23.21 µg h ⁻¹ mg ⁻¹	10.16	0.1 M HCl	Angew. Chem. Int. Ed.,
/CeO ₂	(-0.2 V vs. RHE)			2018, 57, 6073.
Fe ₃ O ₄ /Ti	$5.6 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-1}$	2.6	0.1 M	Nanoscale, 2018, 10, 14386.
	² (-0.4 V vs. RHE)		Na ₂ SO ₄	
N-doped	15.804 µg h ⁻¹ mg ⁻¹	2.72	0.1 M KOH	Catal. Sci. Technol., 2019,
carbon/Fe ₃ C	(-0.4 V vs. RHE)			9, 1208-1214.
Boron-Doped	9.8 μ g h ⁻¹ cm ⁻²	10.8	0.05 M	Joule, 2018, 2, 1-13.
Graphene	(-0.5 V vs. RHE)		H_2SO_4	
B ₄ C/CPE	$26.57 \ \mu g \ h^{-1} \ mg^{-1}$	15.95	0.1M HCl	Nat. Commun., 2018, 9,
	(-0.75 V vs. RHE)			3485.
Mo/Mo _x C	20.4 ug h ⁻¹ mg ⁻¹	18.9	0.1 M	This work
	(-0.3 V vs. RHE)		Na ₂ SO ₄	

Table S2. Performance comparison of Mo-based and some precious-metal-based NRR electrocatalysts.