Supporting Information

Surface-modified Pd/C catalysts for Electrochemical CO₂ Reduction

Rong Xia^{ab}, Sheng Zhang*a, Xinbin Ma^a, Feng Jiao*b

Affiliations:

^aKey Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

^bCenter for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States

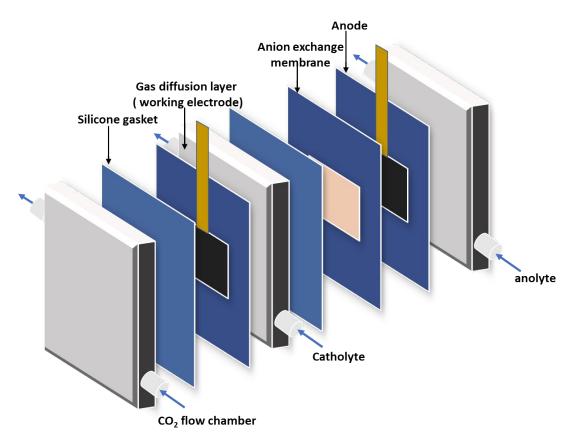


Figure S1: A schematic diagram of 3-compartment microfluidic flow cell configuration.

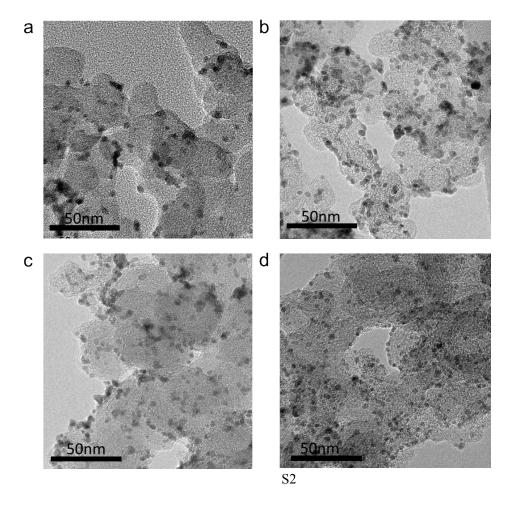


Figure S2: Transition electron microscope (TEM) images of Pd/C-PDDA-X. (a) Pd/C-PDDA-0; (b) Pd/C-PDDA-10; (c) Pd/C-PDDA-20 and (d) Pd/C-PDDA-40.

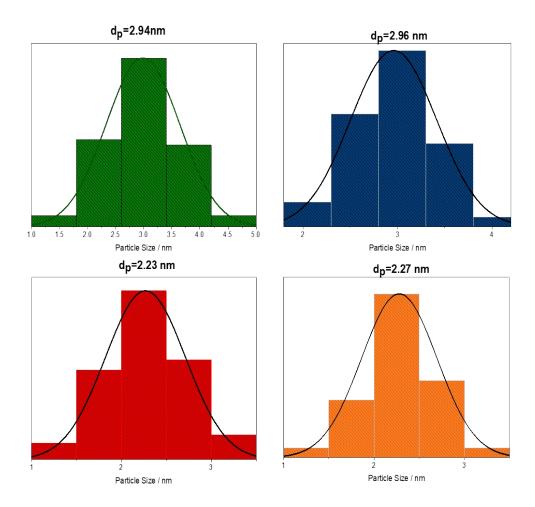


Figure S3: Particle size distribution histograms of (a) Pd/C-PDDA-0, (b) Pd/C-PDDA-10, (c) Pd/C-PDDA-20 and (d) Pd/C-PDDA-40.

Table S1: Pd loading determined by Inductively Coupled Plasma Optical Emission

Sample	Pd	Pd
	theoretical	practical loading /
	loading / wt.%	wt.%
Pd/C-PDDA-0	20	19.3
Pd/C-PDDA-10	20	19.7
Pd/C-PDDA-20	20	19.6
Pd/C-PDDA-40	20	19.8

Spectroscopy analysis (ICP-OES).

Table S2: Mean particle size of different Pd/C-PDDA catalysts.

Sample	Particle size / nm
Pd/C-PDDA-0	3.0
Pd/C-PDDA-10	2.9
Pd/C-PDDA-20	2.5
Pd/C-PDDA-40	2.6

$$D = \frac{K\lambda}{\beta \cos\Theta}$$
 (Eq. S1)

D is the mean size of the ordered crystalline domains;

K is the dimensionless shape factor;

 λ is the wavelength of X-ray;

 β is the subtraction of line broadening at full width at half maximum (FWHM) from the instrumental line broadening;

 θ is the Bragg angle.