Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

## Sheet-dot-framework membrane towards efficient proton conduction

## and outstanding stability

Jianlong Lin<sup>a,1</sup>, Jingchuan Dang<sup>a,1</sup>, Guoli Zhou<sup>a</sup>, Wenjia Wu<sup>a,b,\*</sup>, Yarong Liu<sup>a</sup>, Yafang Zhang<sup>a</sup>,

Jingtao Wang<sup>a,c,\*</sup>

<sup>a</sup>School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

<sup>b</sup>College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

<sup>c</sup>Henan Institute of Advanced Technology, Zhengzhou University, 97 Wenhua Road Zhengzhou

450003, P.R. China

\*To whom correspondence should be addressed: E-mail: wenjiawu@zzu.edu.cn (W.J. Wu);

jingtaowang@zzu.edu.cn (J.T. Wang).

<sup>1</sup>These authors contributed equally to this work.



Fig. S1. Schematic of low-dimension (1D and 2D) structures for proton conduction.



Fig. S2. Photos of GO and DGO powders.



Fig. S3. AFM images and the corresponding height profiles of GO and DGO nanosheets.



Fig. S4. XRD patterns of GO and DGO nanosheets.



Fig. S5. XPS spectra of GO and DGO nanosheets.



Fig. S6. FTIR spectra of GO and DGO nanosheets.



Fig. S7. XRD patterns of the membranes.



Fig. S8. Cross-sectional SEM images of GO, DGO, and SDF-4 membranes.



Fig. S9. TEM image of DGO nanosheet.



Fig. S10. FTIR spectra of the membranes.



Fig. S11. Nitrogen adsorption/desorption isotherms and surface area of the membranes.







Fig. S13. Water contact angle of the membranes.



**Fig. S14.** Photos of the stability of GO, SDF-1, SDF-2, and SDF-3 membranes under ultrasonic treatment for 4 h.



**Fig. S15.** Photos of the stability of GO, DGO, and SDF-4 membranes soaking in water at pH=7 for different time.



**Fig. S16.** Zeta potential of the DGO aqueous solution (1 g  $L^{-1}$ ) and the PQD aqueous solution (1 g  $L^{-1}$ ) with pH of 2-10 (insets are the photographs of PQD solution (1), DGO solution (2), and the mixed solution of PQD and DGO (3)).



Fig. S17. Photo of the stability of DGO/PQD membrane soaking in water for 2 d.



Fig. S18. Photos of the stability of SDF-4 membrane in different pH aqueous solutions for 14 d.



Fig. S19. Stress-strain curves of the membranes.



Fig. S20. Tensile strength and elastic modulus of SDF-1, SDF-2, and SDF-3 membranes.



**Fig. S21.** The mechanical properties of the membranes (inset is a paper cranes folded with SDF-4 membrane).



Fig. S22. Temperature-dependent vertical proton conductivities of the membranes under 100% RH.



Fig. S23. Arrhenius plots of vertical conductivity under 100% RH and the related activation energy values.



**Fig. S24.** Powders, tableting, and fluorescence effect of solution under daylight and 365 nm UV of a) PQD and b) C-PQD.



Fig. S25. Temperature-dependent proton conductivities of PQD and C-PQD under 100% RH.



Fig. S26. Temperature-dependent proton conductivities of DGO/PQD membrane under 100% RH.



Fig. S27. Humidity-dependent vertical proton conductivities of the membranes at 80 °C.



Fig. S28. Water uptake of the membranes at 30 °C.



Fig. S29. Time-dependent vertical proton conductivities of the membranes at 80 °C.



Fig. S30. *IEC* values of the membranes.



**Fig. S31.** Temperature-dependent vertical conductivities of DGO, SDF-1, and SDF-4 membranes under anhydrous conditions.



**Fig. S32.** a) Temperature-dependent horizontal conductivities of the membranes under 100% RH. b) Arrhenius plots of horizontal conductivities under 100% RH and the related activation energy values.

| Sample | Solution concentration $(mol \cdot L^{-1})$ |       | Char yield | <b>PQD</b> content | Thickness  |  |
|--------|---------------------------------------------|-------|------------|--------------------|------------|--|
|        | DETA                                        | СА    | (%)        | (wt %)             | (µm)       |  |
| GO     | -                                           | -     | -          | -                  | 15±2       |  |
| DGO    | -                                           | -     | 37.76      | -                  | 16±1       |  |
| SDF-1  | 0.005                                       | 0.005 | 36.92      | 8.9                | $18\pm3$   |  |
| SDF-2  | 0.01                                        | 0.01  | 36.09      | 17.7               | 17±2       |  |
| SDF-3  | 0.025                                       | 0.025 | 35.67      | 22.1               | $18 \pm 2$ |  |
| SDF-4  | 0.016                                       | 0.016 | 35.23      | 26.6               | $20\pm3$   |  |

**Table S1.** The recipe and calculated PQD content in SDF membranes, and the average thickness of as-prepared membranes

| Membrane               | Tensile<br>strength (MPa) | Elongation at break | Young's<br>modulus (GPa) | Toughness $(MI m^{-3})$ | Ref.      |
|------------------------|---------------------------|---------------------|--------------------------|-------------------------|-----------|
| GO paper               | 58.61                     | 0.76                | 8.21                     | 0.23                    | -         |
| GO-MMT                 | 112.3                     | 1.45                | 13.74                    | 0.988                   | [1]       |
| GO-Borate              | ~160                      | ~0.24               | -                        | -                       | [2]       |
| GO-GA                  | ~101                      | ~0.4                | ~30.4                    | ~0.3                    |           |
| GO-GA-H <sub>2</sub> O | ~93                       | ~1.3                | ~14.4                    | ~0.8                    | [3]       |
| GO-Ca <sup>2+</sup>    | 134.8                     | 0.68                | 28.1                     | -                       |           |
| GO-Mg <sup>2+</sup>    | 124.9                     | 0.47                | 30.5                     | -                       | [4]       |
| GO-PAA                 | 91.9                      | 0.32                | -                        | 0.18                    | [5]       |
| GO-PVA                 | 71                        | 0.27                | 27.6                     | 0.1                     |           |
| GO-PMMA                | 148.3                     | 3.17                | 7.5                      | 2.35                    | [6]       |
| GO-PCDO                | ~106.6                    | ~4.5                | -                        | ~2.52                   | [7]       |
| GO/SGQD-PA-100         | ~55                       | -                   | -                        | -                       | [8]       |
| PGO                    | 29.1                      | 16.4                | 0.73                     | -                       | [9]       |
| PGO-PEI                | 185.3                     | 0.238               | 86.34                    | -                       | [10]      |
| rGO paper              | 150                       | 0.83                | -                        | 0.62                    | [11]      |
| rGO-PCDO               | ~129.6                    | ~6.9                | -                        | ~3.91                   | [7]       |
| rGO-PVA                | 188.9                     | 2.67                | 10.4                     | -                       | [12]      |
| rGO-SF                 | 153                       | 2.8                 | 13                       | 2.6                     | [13]      |
| rGO-PAA                | ~309.57                   | ~8.4                | ~4.57                    | ~8.88                   | [14]      |
| DGO                    | 79.35                     | 0.85                | 8.89                     | 0.41                    |           |
| SDF-1                  | 123.88                    | 1.04                | 10.94                    | 0.8                     | This work |
| SDF-4                  | 166.56                    | 1.12                | 15.22                    | 1.12                    |           |

**Table S2.** Comparison of mechanical properties of SDF membranes with other GO-based membranes

- Not reported

| Fabrication<br>method        | Samples                                          | Testing conditions         | Horizontal<br>proton<br>conductivity<br>(mS·cm <sup>-1</sup> ) | Vertical<br>proton<br>conductivity<br>(mS·cm <sup>-1</sup> ) | Anisotropy                | Ref.         |  |
|------------------------------|--------------------------------------------------|----------------------------|----------------------------------------------------------------|--------------------------------------------------------------|---------------------------|--------------|--|
|                              | GO nanosheet                                     | 85 °C, 100% RH,            | 150                                                            | -                                                            | -                         | [15]         |  |
| m 11 //                      | GO pellet                                        | 60 °C, 0% RH,              | -                                                              | ~0.08                                                        | -                         |              |  |
| Tabletting                   | GO/HBS pellet                                    | 60 °C, 0% RH,              | -                                                              | ~0.36                                                        | -                         | [16]         |  |
|                              | GO/ABZ pellet                                    | 60 °C, 0% RH,              | -                                                              | ~0.59                                                        | Anisotropy<br>coefficient |              |  |
|                              | SP-SGO membrane                                  | 150 °C, 0% RH              | -                                                              | 21.9                                                         | -                         | [17]         |  |
|                              | Nafion/PGO membrane                              | 80 °C, 40% RH              | -                                                              | 44.1                                                         | -                         | [18]         |  |
|                              | CS-PGO-2.5 membrane                              | 45 °C,100% RH              | -                                                              | 31                                                           | -                         | [19]         |  |
| Solution casting             | SPEEK/DGO-10 membrane                            | 30 °C,100% RH              | -                                                              | 26.4                                                         | -                         | [20]         |  |
| method                       | Nafion@3D sGO-3.6 membrane                       | 80 °C, 98% RH              | 330                                                            | 290                                                          | 1.1                       | [01]         |  |
|                              | SPEEK@3D sGO-2.4 membrane                        | 80 °C, 98% RH              | 300                                                            | 270                                                          | 1.1                       | [21]         |  |
|                              | Fe <sub>3</sub> O <sub>4</sub> -sGO/PVA membrane | 25 °C, 100% RH             | -                                                              | 64                                                           | -                         | [22]         |  |
|                              | AQSA-GO membrane                                 | 25 °C, 100% RH             | 30                                                             | 6                                                            | 5.0                       | [23]         |  |
| Spray painting method        | GO membrane                                      | 70 °C, 100% RH             | 49.8                                                           | 0.5                                                          | 99.6                      | [24]         |  |
| Langmuir-<br>Blodgett method | Single-layer GO membrane                         | 25 °C, 90% RH              | 0.2                                                            | -                                                            | -                         | [25]         |  |
| Drop-cast<br>method          | Multilayer GO membrane                           | 25 °C, 60% RH              | 0.4                                                            | -                                                            | -                         | [25]         |  |
|                              | GO-MPS membrane                                  | 30 °C, 100% RH             | 2.09                                                           | -                                                            | -                         | [0]          |  |
|                              | PGO membrane                                     | 80 °C, 51% RH              | 32                                                             | -                                                            | -                         | [7]          |  |
|                              | N-srGOM membrane                                 | 80 °C, 95% RH              | 580                                                            | -                                                            | -                         | [26]         |  |
|                              | OGO membrane                                     | 45 °C, 100% RH             | 230                                                            | -                                                            | -                         | [27]         |  |
|                              | $\{H_6Bi_{12}O_{16}\}/GO\ membrane$              | 80 °C, in aqueous solution | 564                                                            | -                                                            | -                         | [28]         |  |
| Vacuum filtration            | SGO membrane                                     | 30 °C, 100% RH             | 40                                                             | 12                                                           | 3.3                       | [29]         |  |
|                              | GO/SGQD-PA-100                                   | 30 °C, 100% RH             | 159                                                            | ~4.2                                                         | ~37.9                     | [8]          |  |
|                              | GO/MMT/SPVA-30 membrane                          | 30 °C, 100% RH             | 92.1                                                           | -                                                            | -                         | [1]          |  |
|                              | DGO membrane                                     | 80 °C, 100% RH             | 85                                                             | 4.9                                                          | 17.3                      |              |  |
|                              | SDF-1                                            | 80 °C, 100% RH             | 98.6                                                           | 36.8                                                         | 2.7                       | This<br>work |  |
|                              | SDF-4                                            | 80 °C, 100% RH             | 135.3                                                          | 54.6                                                         | 2.5                       |              |  |

| Table S3. Comparison of proton conductivities of SDF membranes with other GO-based |
|------------------------------------------------------------------------------------|
| membranes                                                                          |

- Not reported

| Membranes               |                                         | Testing conditions | Proton conductivity<br>(mS·cm <sup>-1</sup> ) | Tensile strength<br>(MPa) | Ref.      |
|-------------------------|-----------------------------------------|--------------------|-----------------------------------------------|---------------------------|-----------|
|                         | Spray-painted GO                        | 70 °C, 100% RH     | 0.5 <sup>a</sup>                              | 54.5                      | [24]      |
| GO laminate             | GO                                      | 70 °C, 100% RH     | 0.55 <sup>a</sup>                             | ~56                       | [30]      |
|                         | DGO                                     | 80 °C, 100% RH     | 4.9 <sup>a</sup>                              | 79.35                     | -         |
|                         | PGO                                     | 80 °C, 51% RH      | 32 <sup>b</sup>                               | 29.1                      | [9]       |
|                         | SGO                                     | 30 °C, 100% RH     | 12 <sup>a</sup>                               | ~20                       | [29]      |
|                         | GO/SGQD-PA-100                          | 30 °C, 100% RH     | $\sim 4.2^{a}$                                | ~55                       | [8]       |
|                         | SP-SGO                                  | 150 °C, 0% RH      | 21.9ª                                         | 36.6                      | [17]      |
|                         | CS-PGO                                  | 45 °C,100% RH      | 31 <sup>a</sup>                               | 51.5                      | [19]      |
|                         | SPEEK-DGO                               | 30 °C,100% RH      | 26.4 <sup>a</sup>                             | 57.5                      | [20]      |
| Polymer-GO<br>composite | Fe <sub>3</sub> O <sub>4</sub> -sGO/PVA | 25 °C, 100% RH     | 64 <sup>a</sup>                               | ~76.2                     | [22]      |
|                         | SPEEK-ASPGO                             | 80 °C, 100% RH     | $\sim \! 110^b$                               | ~41                       | [31]      |
|                         | SP/I-P-@SiGO                            | 120 °C, 0% RH      | 4.3 <sup>a</sup>                              | ~40                       | [32]      |
|                         | CS/S4GO                                 | 120 °C, 0% RH      | 10.9 <sup>a</sup>                             | 85.3                      | [33]      |
| Commercial<br>Nafion    | Nafion 117                              | 30 °C, 100% RH     | 76.8 <sup>a</sup>                             | ~25                       | [9]       |
| Sheet-dot<br>framework  | lot SDF-1 80 °C, 100% RH                |                    | 36.8 <sup>a</sup>                             | 123.88                    | This mode |
|                         | SDF-4                                   | 80 °C, 100% RH     | 54.6ª                                         | 166.56                    | THIS WOLK |

**Table S4.** Comparison of proton conductivity and mechanical property of SDF membranes with other GO-based membranes

<sup>a</sup> vertical proton conductivity; <sup>b</sup> horizontal proton conductivity

## **Supplementary References**

- G. He, M. Xu, J. Zhao, S. Jiang, S. Wang, Z. Li, X. He, T. Huang, M. Cao, H. Wu, M. D. Guiver and Z. Jiang, *Adv. Mater.*, 2017, 29, 1605898.
- Z. An, O. C. Compton, K. W. Putz, L. C. Brinson and S. T. Nguyen, *Adv. Mater.*, 2011, 23, 3842–3846.
- 3 Y. Gao, L. Q. Liu, S. Z. Zu, K. Peng, D. Zhou, B. H. Han and Z. Zhang, ACS Nano, 2011, 5, 2134–2141.
- 4 S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen and R. S. Ruoff, ACS Nano, 2008, 2, 572–578.
- 5 S. Park, D. A. Dikin, S. T. Nguyen and R. S. Ruoff, J. Phys. Chem. C, 2009, 113, 15801– 15804.
- 6 K. W. Putz, O. C. Compton, M. J. Palmeri, S. T. Nguyen and L. C. Brinson, Adv. Funct. Mater., 2010, 20, 3322–3329.
- 7 Q. Cheng, M. Wu, M. Li, L. Jiang and Z. Tang, Angew. Chem., Int. Ed., 2013, 52, 3750– 3755.
- 8 B. Shi, H. Wu, J. Shen, L. Cao, X. He, Y. Ma, Y. Li, J. Li, M. Xu, X. Mao, M. Qiu, H. Geng,
  P. Yang and Z. Jiang, *ACS Nano*, 2019, **13**, 10366–10375.
- 9 G. He, C. Chang, M. Xu, S. Hu, L. Li, J. Zhao, Z. Li, Z. Li, Y. Yin, M. Gang, H. Wu, X. Yang, M. D. Guiver and Z. Jiang, *Adv. Funct. Mater.*, 2015, 25, 7502–7511.
- 10 Y. Tian, Y. Cao, Y. Wang, W. Yang and J. Feng, Adv. Mater., 2013, 25, 2980–2983.
- H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace and D. Li, *Adv. Mater.*, 2008, 20, 3557–3561.
- 12 Y. Q. Li, T. Yu, T. Y. Yang, L. X. Zheng and K. Liao, *Adv. Mater.*, 2012, 24, 3426–3431.
- 13 K. Hu, L. S. Tolentino, D. D. Kulkarni, C. Ye, S. Kumar and V. V. Tsukruk, Angew. Chem., Int. Ed., 2013, 52, 13784–13788.
- 14 S. Wan, H. Hu, J. Peng, Y. Li, Y. Fan, L. Jiang and Q. Cheng, *Nanoscale*, 2016, 8, 5649– 5656.

- 15 M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S. I. Noro, T. Yamada, H. Kitagawa and S. Hayami, *J. Am. Chem. Soc.*, 2013, **135**, 8097–8100.
- 16 J. Wang, L. Zhao, D. Wei, W. Wu, J. Zhang and X. Cheng, *Ind. Eng. Chem. Res.*, 2016, 55, 11931–11942.
- 17 W. Wu, Y. Li, P. Chen, J. Liu, J. Wang and H. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 588–599.
- 18 B. Zhang, Y. Cao, S. Jiang, Z. Li, G. He and H. Wu, J. Membr. Sci., 2016, 518, 243–253.
- H. Bai, Y. Li, H. Zhang, H. Chen, W. Wu, J. Wang and J. Liu, *J. Membr. Sci.*, 2015, 495, 48–60.
- 20 Y. He, J. Wang, H. Zhang, T. Zhang, B. Zhang, S. Cao and J. Liu, *J. Mater. Chem. A*, 2014, 2, 9548–9558.
- L. Cao, H. Wu, P. Yang, X. He, J. Li, Y. Li, M. Xu, M. Qiu and Z. Jiang, *Adv. Funct. Mater.*, 2018, 28, 1804944.
- 22 H. Beydaghi and M. Javanbakht, Ind. Eng. Chem. Res., 2015, 54, 7028-7037.
- 23 M. Gautam, M. C. Devendrachari, R. Thimmappa, A. R. Kottaichamy, S. P. Shafi, P. Gaikwad, H. M. N. Kotresh and M. O. Thotiyl, *Phys. Chem. Chem. Phys.*, 2017, **19**, 7751–7759.
- 24 T. Bayer, R. Selyanchyn, S. Fujikawa, K. Sasaki and S. M. Lyth, J. Membr. Sci., 2017, 541, 347–357.
- K. Hatakeyama, M. R. Karim, C. Ogata, H. Tateishi, A. Funatsu, T. Taniguchi, M. Koinuma,
  S. Hayami and Y. Matsumoto, *Angew. Chem., Int. Ed.*, 2014, **126**, 7117–7120.
- 26 W. Jia, B. Tang and P. Wu, ACS Appl. Mater. Interfaces, 2017, 9, 22620–22627.
- W. Gao, G. Wu, M. T. Janicke, D. A. Cullen, R. Mukundan, J. K. Baldwin, E. L. Brosha, C. Galande, P. M. Ajayan, K. L. More, A. M. Dattelbaum and P. Zelenay, *Angew. Chem., Int. Ed.*, 2014, 53, 3588–3593.
- 28 B. Liu, D. Cheng, H. Zhu, J. Du, K. Li, H. Y. Zang, H. Tan, Y. Wang, W. Xing and Y. Li, *Chem. Sci.*, 2019, **10**, 556–563.
- 29 Ravikumar and K. Scott, Chem. Commun., 2012, 48, 5584–5586.

- 30 T. Bayer, S. R. Bishop, M. Nishihara, K. Sasaki and S. M. Lyth, *J. Power Sources*, 2014, 272, 239–247.
- 31 G. Rambabu and S. D. Bhat, J. Membr. Sci., 2018, 551, 1–11.
- J. Wang, H. Bai, J. Zhang, L. Zhao, P. Chen, Y. Li and J. Liu, J. Membr. Sci., 2017, 531, 47–58.
- Y. Liu, J. Wang, H. Zhang, C. Ma, J. Liu, S. Cao and X. Zhang, J. Power Sources, 2014, 269, 898–911.