Supporting Information for

Probing electrochemical reactivity in an Sb₂S₃-containing potassium-ion battery anode: observation of an increased capacity

V. Lakshmi^a, Alexey A. Mikhaylov^b, Alexander G. Medvedev^b, Chao Zhang^{c,d}, Thrinathreddy Ramireddy^{e,f}, Md Mokhlesur Rahman^a, Pavel Cizek^a, Dmitri Golberg^{c,d,g}, Ying Chen^a, Ovadia Lev^h, Petr V. Prikhodchenko^{b,*}, Alexey M. Glushenkov^{e,f,*}

^a Institute for Frontier Materials, Deakin University, Geelong Campus at Waurn Ponds, VIC 3216, Australia

^b Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation

^c Centre for Materials Science, Queensland University of Technology (QUT), 2nd George str., Brisbane, QLD 4000, Australia

^d School of Chemistry and Physics, Queensland University of Technology (QUT), 2nd George str., Brisbane, QLD 4000, Australia

^e Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia

^f Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2601, Australia

^g International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namik 1-1, Tsukuba, Ibaraki 3050044, Japan

^h The Casali Center of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel

* Corresponding authors. Email: prikhman@gmail.com; alexey.glushenkov@anu.edu.au

Part 1. Additional electron microscopy characterisation data.

Fig. S1. Additional SEM and bright-field STEM images acquired from three locations: top row – SEM images; bottom row – STEM images simultaneously acquired from the same locations.

Part 2. Electrochemical performance of a commercial Sb_2S_3 powder

Fig. S2. The plot of charge and discharge capacities vs cycle number (a) and selected chargedischarge profiles at a current rate of 50 mA g^{-1} (b) for an electrode prepared with a commercial Sb_2S_3 powder.

Part 3. Cyclic voltammetry of Sb₂S₃-rGO

Fig. S3. Cyclic voltammetry curves of the Sb_2S_3 -rGO composite in the first and tenth cycles at a sweep rate of 0.25 mV s⁻¹.

Part 4. Charge-discharge curves of Sb₂S₃-rGO in EC/DEC-based electrolyte

Fig. S4. Selected charge-discharge profiles for the Sb_2S_3 -rGO composite in 1M KPF₆ in EC/DEC electrolyte at a current rate of 50 mA g⁻¹.

Part 5. Charge-discharge curves of Sb₂S₃-rGO in DME-based electrolyte

Fig. S5. Selected charge-discharge profiles for the Sb_2S_3 -rGO composite in 1M KPF₆ in DME electrolyte at a current rate of 50 mA g⁻¹.

Part 6. Charge-discharge profiles for cycling in two potential ranges

Fig. S6. Selected charge-discharge profiles obtained for the Sb_2S_3 -rGO electrodes in two potential ranges (solid lines: 0.45-2.1 V vs K/K⁺ and dotted lines: 0.18-2.1 V vs K/K⁺).

Part 7. Coulombic efficiencies in different potential ranges

Fig. S7. Coulombic efficiencies observed in the initial cycles for Sb_2S_3 -rGO electrodes in potential ranges 0.01 - 2.1 V vs K/K⁺ and 0.45 - 2.1 V vs K/K⁺.

Part 8. Data (recorded imaged and electron diffraction patterns in .dm4 format) for in-situ TEM experiments

Files have been uploaded separately as .zip archives. Archive names are

in_situ_TEM_location1.zip and in_situ_TEM_location2.zip

Each .dm4 frame contains acquisition time as a part of file name.