Supporting Information

Ultra-fast and ultra-long-life Li ion batteries with 3D surface-porous graphene anodes synthesized from CO_2

Lei Wang, Juntao Deng, Yuhuan Fei, Jie Deng, Yan Fang, and Yun Hang Hu^{*}

Figure S1. XRD patterns of as-synthesized 3DGs and commercial graphite.

Table SI. The structural parameters of 3DGs from XRD.

Samples	d_{002}	L _c	Sheet layers
3DG-12h	3.87	1.96	5.0
3DG-24h	3.85	1.96	5.0
3DG-36h	3.81	1.91	5.0
3DG-48h	3.79	1.91	5.0

Figure S3. N_2 adsorption/desorption curves at 77 K of (a) 3DG-12h, (b) 3DG-24h, (c) 3DG-36h, and (d) 3DG-48h samples.

Raman		C1s (XPS)			Elemental (EDS)	
Samples	I_D/I_G	sp ² -C (%)	sp ³ -C (%)	C-O (%)	C (at.%)	O (at.%)
3DG-12h	1.02	73.1	14.4	12.4	93.57	6.43
3DG-24h	1.01	74.0	14.3	11.7	93.94	6.06
3DG-36h	1.00	74.5	14.5	11.0	94.62	5.38
3DG-48h	0.98	74.8	14.8	10.4	95.28	4.72

Table SII. The composition of as-synthesized 3DGs.

Table SIII. The initial capacity and coulombic efficiency of 3DGs at 0.2C.

charge capacity	discharge capacity	Coulombic efficiency
$(mAh g^{-1})$	$(mAh g^{-1})$	(%)
910	1842	49.4
972	1965	49.5
965	1961	49.2
929	1896	49.0
	charge capacity (mAh g ⁻¹) 910 972 965 929	charge capacity (mAh g ⁻¹) discharge capacity (mAh g ⁻¹) 910 1842 972 1965 965 1961 929 1896

Figure S4. Cyclic performance and coulombic efficiency of 3DG-24h electrode at 0.2 C.

Figure S5. SEM images of 3DG-24h electrode: (a, b) for the pristine electrode and (c, d) for the electrode after 10000 cycles.

Table SIV. Comparison of electrochemical	performance	of 3DGs	with pre-	eviously	reported
carbon-based anode materials in LIBs.					

Electrodes	Current density	Electrochemical properties	Cycle life (capacity retention)	References
3DG	$1C = 372 \text{ mA g}^{-1}$	972-277 mAh g ⁻¹ at 0.2-150C	10000 cycles at 50 C (91.9%)	This work
Doped graphene Sheets	$1C = 500 \text{ mA g}^{-1}$	1040-235 mAh g ⁻¹ at 0.1-50C	30 cycles at 0.1 C (83.6%)	S1
3D nitrogen-doped carbon frameworks	$1C = 500 \text{ mA g}^{-1}$	675-279 mAh g ⁻¹ at 0.2-20C	10000 cycles at 20 C (54%)	S2
Carbon clusters @ hard carbon nanofibers	$1C = 372 \text{ mA g}^{-1}$	549-129 mAh g ⁻¹ at 0.3-13.4C	1000 cycles at 2.7 C (99.7%)	S3
Carbon nanotube clusters@3DG	$1C = 500 \text{ mA g}^{-1}$	1132-383 mAh g ⁻¹ at 0.2-10C	1000 cycles at 4 C (75%)	S4
Pomegranate-shaped Sn/SnO _x /nanocarbon composites	$1C = 500 \text{ mA g}^{-1}$	526-289 mAh g ⁻¹ at 0.5-6C	5000 cycles at 15 C (89%)	S5
TiO ₂ /Micron carbon fibers	$1C = 200 \text{ mA g}^{-1}$	690.4-100 mAh g ⁻¹ at 0.5-16C	5000 cycles at 10 C (92%)	S6
Co@ porous carbon nanosheets	$1C = 500 \text{ mA g}^{-1}$	900-510mAh g ⁻¹ at 0.1-16C	1000 cycles at 16 C (90%)	S7
Graphene–silica (SiO _x)	$1C = 700 \text{ mA g}^{-1}$	716.2-382.6 mAh g ⁻¹ at 0.1-5C	400 cycles at 5 C (88%)	S8
Nitrogen-containing carbon film	$1C = 500 \text{ mA g}^{-1}$	908.4-325.9 mAh g ⁻¹ at 1-40C	800 cycles at 10 C (91.6%)	S9

_

Samples	R_s/Ω	R_{ct}/Ω
3DG-12h	3.1	149.1
3DG-24h	2.6	170.2
3DG-36h	2.9	203.0
3DG-48h	2.5	235.5

Table SV. The R_s and R_{ct} values, obtained from fitting the equivalent circuit to the experimental data.

Table SVI. Comparison of capacitive contributions of 3DGs with those of reported carbonbased anode materials in LIBs.

Electrodes	Capacitive contributions	Scan rate of CV	References
3DG	56.4%	1 mV s ⁻¹	This work
High-defect mesopore-dominant porous carbon (HDMPC)	46.7%	10 mV s ⁻¹	S10
Porous carbon (PC)	55.2%	0.75 mV s^{-1}	S11
Three-dimensional hollow carbon spheres/reduced graphene oxide nanocomposites (DHCSs/RGO)	52.6%	1 mV s ⁻¹	S12
Boron-doped 3D hierarchical porous carbon network(B-CN)	36.0%	1 mV s-1	S13
Nitrogen-sulfur co-doped porous carbon (NSPC)	86.3%	0.75 mV s^{-1}	S11
Nitrogen-rich hierarchically porous carbon (NHPC)	64.0%	1 mV s ⁻¹	S14
Nitrogen and phosphorus co-doped carbon nanosheets (NP-CNSs)	65.5%	$0.8 \mathrm{~mV~s^{-1}}$	S15

References

- S1. Z. S. Wu, W. C. Ren, L. Xu, F. Li and H. M. Cheng, ACS Nano, 2011, 5, 5463-5471.
- S2. J. Wang, H. Fan, Y. Shen, C. Li and G. Wang, Chem. Eng. J., 2019, 357, 376-383.
- S3. C. Liu, N. Xiao, Y. Wang, H. Li, G. Wang, Q. Dong, J. Bai, J. Xiao and J. Qiu, Fuel Process. Technol., 2018, 180, 173-179.
- S4. S. Z. Huang, J. Y. Wang, Z. Y. Pan, J. L. Zhu and P. K. Shen, J. Mater. Chem. A, 2017, 5, 7595-7602
- S5. M. D. Cao, M. Zhang, L. L. Xing, Q. Wang and X. Y. Xue, J. Alloy Compd. 2017, 694, 30-39.
- S6. D. D. Wang, G. H. Zhang, Z. Q. Shan, T. Y. Zhang and J. H. Tian, *Chem. Electro. Chem.*, 2018, 5, 540-545.
- S7. V. Etacheri, C. N. Hong, J. L. Tang and V. G. Pol, ACS Appl. Mater. Inter., 2018, 10, 4652-4661.
- S8. I. H. Son, J. H. Park, S. Park, K. Park, S. Han, J. Shin, S. G. Doo, Y. Hwang, H. Chang and J. W. Choi, *Nat. Commun.*, 2017, 8, 1-11.
- S9. T. Yuan, Y. S. He, W. M. Zhang and Z. F. Ma, Chem. Commun., 2016, 52, 112-115.
- S10 J. Niu, R. Shao, M.Y. Liu, J.J. Liang, Z.P. Zhang, M.L. Dou, Y.Q. Huang and F. Wang, *Energy Storage Materials*, 2018, **12**, 145-152.
- S11 M.Q. Du, Y.S. Meng, C. Wang, C.Y. Duan, F.L. Zhu and Y. Zhang, *Journal of Electroanalytical Chemistry*, 2019, 834, 17-25.
- S12 Y.Q. Zhang, Q, Ma, S.L. Wang, X. Liu and L. Li, ACS Nano, 2018, 12, 4824-4834.
- S13 D. Wang, Z.Y. Wang, Y. Li, K.Z. Dong, J.H. Shao, S.H. Luo, Y.G. Liu and X.W. Qi, *Applied Surface Science*, 2019, **464**, 422-428.
- S14 C.M. Zheng, X.D. Hu, X.H. Sun, S. J. Yoo and X. Li, *Electrochimica Acta*, 2019, **306**, 339-349
- S15 C. Gao, J.Z. Feng, J.G. Dai, Y.Y. Pan, Y.L. Zhu, W.H. Wang, Y.F. Dong, L.F. Cao, L. Guan, L. Pan, H. Hu and M.B. Wu, *Carbon*, 2019, **153**, 372-380.