# SUPPORTING INFORMATION

# Substitutional doping of hybrid organic-inorganic perovskite crystals for thermoelectrics

Weidong Tang,<sup>a,b</sup> Jinshuai Zhang,<sup>a</sup> Sinclair Ratnasingham,<sup>c</sup> Fabiola Liscio,<sup>d</sup> Kan Chen,<sup>a</sup> Tianjun Liu,<sup>a,b</sup> Kening Wan,<sup>a,b</sup> Eugenio Suena Galindez,<sup>a,b</sup> Emiliano Bilotti,<sup>a,b</sup> Mike Reece,<sup>a</sup> Mark Baxendale,<sup>b,e</sup> Silvia Milita,<sup>d</sup> Martyn A. McLachlan,<sup>c</sup> Lei Su,<sup>a</sup> Oliver Fenwick.<sup>a,b\*</sup>

<sup>a</sup> School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom;

<sup>b</sup> The Organic Thermoelectrics Laboratory, Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom;

<sup>c</sup> Department of Materials and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, United Kingdom;

<sup>*d*</sup> Istituto per la Microelettronica e Microsistemi (IMM)-Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy;

<sup>e</sup> School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.



**Figure S1:** High-resolution XRD rocking curves around the (002) peak at  $\theta = 15.4^{\circ}$  for 0%, 5% and 10% Bi-doped MAPbBr<sub>3</sub> single.



**Figure S2:** XPS spectra of (a) C 1s, (b) N 1s and (c) Br 3d in 15% Bi-doped freshly cleaved MAPbBr<sub>3</sub> single crystals.

**Table S1:** Density of pristine and Bi-doped MAPbBr<sub>3</sub> single crystals. The average density and standard deviation are calculated from measurements of 4 samples.

| Materials                    | 0% doped | 1% doped | 5% doped | 10% doped | 15% doped |
|------------------------------|----------|----------|----------|-----------|-----------|
| Density                      |          |          |          |           |           |
| Density(g/cm <sup>-3</sup> ) | 3.665    | 3.654    | 3.652    | 3.657     | 3.647     |
| Std. Dev.                    | 0.01     | 0.008    | 0.013    | 0.013     | 0.007     |

The density ( $\rho$ ) was determined using Archimedes' principle:  $\rho = \frac{mass \ of \ crystal}{displaced \ volume \ of \ fluid}$ . We cut and polished the pristine and Bi-doped crystals to a regular cubic size and then measured their volume (v) and mass (m), respectively. For each Bi concentration, we measured four crystals and obtained an average density and its stand deviation.



**Figure S3:** Thermal properties of pristine and Bi-doped MAPbBr<sub>3</sub> single crystals. (a) Temperaturedependent thermal diffusivity, *D*. (b) Temperature dependence of heat capacity  $C_p$ .

4



**Figure S4:** The arrangement of the Bi-doped crystal under investigation and reference material wire relative to the hot- and cold-reservoirs used in the MMR Seebeck Measurement System.

**Figure S4** is a schematic of the sample holder of the Seebeck coefficient measurement system. The 15% Bi-doped crystals were cleaved to suitable dimensions and mounted on the holder, along with the constantan reference wire (constantan wire of diameter  $300 \mu m$ ), to the hot- and cold-reservoirs. Silver paste was used to guarantee electrical and thermal contact with the reservoirs. The holder was then mounted on a variable-temperature stage within a vacuum chamber, which provided the stable absolute temperature for the measurement. During the measurement, the on-holder heater provided the approximately one degree temperature difference between hot- and cold-reservoirs.

For a single Seebeck coefficient measurement, the system records  $V_{samp}$  and  $V_{ref}$  for two values of electrical power supplied to the on-holder heater,  $P_1$  and  $P_2$ . The Seebeck coefficient of the sample is given by,

$$S_{samp} = S_{ref} \frac{[V_{samp}(P_1) - V_{samp}(P_2)]}{[V_{ref}(P_1) - V_{ref}(P_2)]}$$

The system is calibrated against a standard temperature variation of  $S_{ref}$ . The data points in Figure 4 of the main text are the average of ten measurements, the error bars are the standard deviation.



Figure S5: The configuration of Hall Effect sample and stage.

Model 8404 AC/DC Hall Effect Measurement System (Lake Shore Cryotronics, Inc)

#### **SPECIMEN**

Materials: MAPbBr<sub>3</sub> Thickness: 1.86 mm

#### **RESULTS SUMMARY**

 $\begin{array}{l} \mu_{H} \; [cm^{2}/V \cdot s] : \; 8.15 E^{-1} \\ n \; [1/cm^{3}] : \; 1.19 E^{11} \\ n_{sheet} \; [1/cm^{2}] : \; 2.22 E^{10} \\ R_{H} \; [cm^{3}/C] : \; 5.23 E^{7} \end{array}$ 

#### CONTACT CHECK

Measured on 11/09/2019

#### MEASURING CONDITIONS

Excitation current: 7 nA Field: 1.19 T

 $\begin{array}{l} R_{Hsheet} \; [cm^2/C]: \; 2.81E^8 \\ P \; [\Omega\cdot cm]: \; 6.42E^7 \\ \rho_{sheet} \; [\Omega/\Box]: \; 3.45E^8 \\ V_H \; [V]: \; 2.3517E^{-4} \end{array}$ 



#### RESISTIVITY

| Intermediate results                        | Geom         | etry A       | Geometry B   |              |  |
|---------------------------------------------|--------------|--------------|--------------|--------------|--|
|                                             | <u>R2134</u> | <u>R3241</u> | <u>R4312</u> | <u>R1423</u> |  |
| Resistance [Ω]                              | 9.30E+07     | 6.28E+07     | 8.90E+07     | 6.32E+07     |  |
| Standard deviation of resistance $[\Omega]$ | 3.74E+04     | 7.90E+03     | 2.57E+04     | 8.36E+03     |  |
| Voltage [V]                                 | 6.52E-01     | 4.41E-01     | 6.24E-01     | 4.43E-01     |  |
| Standard deviation of voltage [V]           | 2.62E-04     | 5.46E-05     | 1.80E-04     | 5.84E-05     |  |
| Current [A]                                 | 7.01E-09     | 7.01E-09     | 7.01E-09     | 7.01E-09     |  |
| Standard deviation of current [A]           | 1.18E-13     | 1.47E-13     | 1.14E-13     | 8.35E-14     |  |

## HALL MEASUREMENTS

| Average measurements              | Geometry C    |               |               | Geometry D    |               |               |
|-----------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                                   | <u>I+(P1)</u> | <u>I-(N1)</u> | <u>I+(P2)</u> | <u>l+(P1)</u> | <u>I-(N1)</u> | <u>I+(P2)</u> |
| Voltage [V]                       | 2.26E-04      | 2.52E-04      | 1.80E-04      | 1.41E-04      | 3.49E-04      | 1.41E-04      |
| Standard deviation of voltage [V] | 4.64E-05      | 1.32E-05      | 1.16E-05      | 1.28E-05      | 1.54E-06      | 4.12E-06      |
| Phase [deg.]                      | -2.00E-01     | -1.78E+02     | -8.00E+00     | -9.90E+00     | -1.75E+02     | -1.15E+01     |
| Current [A]                       | 7.01E-09      | -7.01E-09     | 7.01E-09      | 7.01E-09      | -7.01E-09     | 7.01E-09      |
| Misalignment voltage [DC V]       | N/A           | N/A           | N/A           | N/A           | N/A           | N/A           |
| Current lead voltage [DC V]       | N/A           | N/A           | N/A           | N/A           | N/A           | N/A           |

Figure S6: AC Hall Effect results of non-doped MAPbBr<sub>3</sub> single crystals.

Model 8404 AC/DC Hall Effect Measurement System (Lake Shore Cryotronics, Inc)

#### **SPECIMEN**

#### Materials: MAPbBr<sub>3</sub> Thickness: 2.02 mm

#### **RESULTS SUMMARY**

 $\begin{array}{l} \mu_{H} \; [cm^{2}/V \cdot s] : \; 2.09 \\ n \; [1/cm^{3}] : \; 4.48 E^{14} \\ n_{sheet} \; [1/cm^{2}] : \; 1.08 E^{14} \\ R_{H} \; [cm^{3}/C] : \; 1.39 E^{4} \end{array}$ 

#### CONTACT CHECK

Measured on 23/08/2019

#### MEASURING CONDITIONS

Excitation current: 10 uA Field: 1.19 T

 $\begin{array}{l} R_{Hsheet} \; [cm^2/C]: \; 5.77E^4 \\ P \; [\Omega \cdot cm]: \; 6.66E^3 \\ \rho_{sheet} \; [\Omega / \Box]: \; 2.76E^4 \\ V_H \; [V]: \; 6.8932E^{-5} \end{array}$ 



### RESISTIVITY

| Intermediate results                        | Geometry A   |              | Geometry B   |              |
|---------------------------------------------|--------------|--------------|--------------|--------------|
|                                             | <u>R2134</u> | <u>R3241</u> | <u>R4312</u> | <u>R1423</u> |
| Resistance [Ω]                              | 8.02E+03     | 4.81E+03     | 7.56E+03     | 4.55E+03     |
| Standard deviation of resistance $[\Omega]$ | 1.21E+01     | 8.64E+01     | 1.53E+02     | 1.69E+02     |
| Voltage [V]                                 | 8.02E-02     | 4.81E-02     | 7.56E-02     | 4.55E-02     |
| Standard deviation of voltage [V]           | 1.21E-04     | 8.64E-04     | 1.53E-03     | 1.69E-03     |
| Current [A]                                 | 1.00E-05     | 1.00E-05     | 1.00E-05     | 1.00E-05     |
| Standard deviation of current [A]           | 1.70E-11     | 3.96E-11     | 7.02E-11     | 3.33E-11     |

#### HALL MEASUREMENTS

| Average measurements              | Geometry C    |               |               | Geometry D    |               |               |  |
|-----------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
|                                   | <u>I+(P1)</u> | <u>l-(N1)</u> | <u>I+(P2)</u> | <u>I+(P1)</u> | <u>I-(N1)</u> | <u>I+(P2)</u> |  |
| Voltage [V]                       | 4.78E-05      | 3.65E-05      | 2.04E-04      | 6.08E-04      | 1.09E-04      | 8.75E-05      |  |
| Standard deviation of voltage [V] | 2.57E-04      | 1.65E-04      | 3.06E-04      | 6.47E-04      | 2.79E-04      | 1.42E-04      |  |
| Phase [deg.]                      | -1.57E+02     | 3.83E+01      | -1.19E+02     | 1.49E+02      | 1.66E+02      | -1.14E+02     |  |
| Current [A]                       | 1.00E-05      | -1.00E-05     | 1.00E-05      | 1.00E-05      | -1.00E-05     | 1.00E-05      |  |
| Misalignment voltage [DC V]       | N/A           | N/A           | N/A           | N/A           | N/A           | N/A           |  |
| Current lead voltage [DC V]       | N/A           | N/A           | N/A           | N/A           | N/A           | N/A           |  |

Figure S7: AC Hall Effect results of 15% Bi-doped MAPbBr<sub>3</sub> single crystals.

| Bi/Pb atomic ratio % in | Hall Mobility      | Carrier Concentration | Charge Type (N/P) |
|-------------------------|--------------------|-----------------------|-------------------|
| solution                | $(cm^2/V \cdot s)$ | (cm <sup>-3</sup> )   |                   |
| 0                       | 0.58               | $1.19 \times 10^{11}$ | Р                 |
| 1                       | 1.86               | $4.49 \times 10^{13}$ | Ν                 |
| 5                       | 5.41               | $5.41 \times 10^{13}$ | Ν                 |
| 10                      | 7.51               | $8.60 \times 10^{13}$ | Ν                 |
| 15                      | 2.09               | $4.48 \times 10^{14}$ | N                 |

**Table S2:** AC Hall Effect results of pristine and Bi-doped MAPbBr<sub>3</sub> single crystals.