Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Hexagonal boron nitride inducing anionic trapping in polyethylene oxide based

solid polymer electrolyte for lithium dendrite inhibition

Yuhan Li,^a Libo Zhang,^a Zongjie Sun,^a Guoxin Gao,^{a*} Shiyao Lu,^a Min Zhu,^a Yanfeng Zhang,^a Zhiyu Jia,^b Chunhui Xiao,^a Huaitian Bu,^c Kai Xi,^d Shujiang Ding^{a*}

^a Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.

^b MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

^c Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway.

^d University of Cambridge, Department of Materials Science and Metallurgy.

Email: gaoguoxin@mail.xjtu.edu.cn; dingsj@mail.xjtu.edu.cn

Keywords: Hexagonal boron nitride, polymer solid electrolyte, ion transport mechanism, Li dendrites inhibition, DFT and MD.

Fig. S1 The SEM image of h-BN nanosheets.

Fig. S2 Elemental mapping images of h-BN nanosheets.

Fig. S3 XRD spectra of h-BN.

Fig. S4 (a) Photograph of h-BN nanosheets dissolving in acetonitrile. (b) The picture of the homogeneous electrolyte solution of h-BN, PEO and LiTFSI in acetonitrile.

Fig. S5 XRD of LiTFSI. The peaks at 11.04°, 16.03°, 19.09°, 20.55°, 21.54°, 23.32°, 25.07°, 27.4°, 29.03°, 32.20°, 33.48°, 38.30° and 44.54° perfectly match to (002), (011), (201), (111), (202), (013), (113), (212), (114), (015), (115), (116) and (125) crystal planes.

Fig. S6 The T_m of PEO/LiTFSI/6%-h-BN with different EO: Li = 20, 32, 44.

Fig. S7 (a) The T_m of PEO, PEO/LiTFSI and PEO/LiTFSI/x=h-BN (x= 3%, 6% and 9%) CPE. (b) Fourier-transform infrared spectra (FTIR) of h-BN, PEO, PEO/LiTFSI and PEO/LiTFSI/x=h-BN (x= 3%, 6% and 9%) CPE.

Fig. S8 The stress-strain curves of PEO/LiTFSI/6% h-BN with different EO: Li = 20:1, 32:1, 44:1.

Fig. S9 The EIS plots for PEO/LiTFSI SPE under 50-80 °C.

Fig. S10 (a) I-t curve for PEO/LiTFSI SPE at 60 °C with polarization voltage of 10 mV. (b) The A. C impedance plots before and after the polarization.

Fig. S11 Impedance spectra of the Li/PEO/LiTFSI SPE/LiFePO₄ cell before and after 5 cycles at 60 °C.

Fig. S12 The equivalent circuit of Li/PEO/LiTFSI SPE/LiFePO₄ and Li/PEO/LiTFSI/h-BN CPE/LiFePO₄ cell at 60 °C.

Fig. S13 The magnified cycling curves of battery using PEO/LiTFSI/h-BN CPE and PEO/LiTFSI SPE for selected cycles.

Fig. S14 The SEM image (a) and cross-sectional image (b) of Li foil before cycle.

Fig. S15 The SEM and cross-sectional image of Li anode after cycle in the batteries using PEO/LiTFSI SPE (a) and PEO/LiTFSI/6% h-BN CPE (b).

Fig. S16 Open circuit voltage of the assembled solid-state soft-package lithium metal battery at room temperature.

Fig. S17 Cycle performance of Li/PEO/LiTFSI/6% h-BN/LiFePO₄ soft-package lithium metal battery at 0.1 C and 60 °C.

$\sigma \times 10^{-4} \mathrm{S} \mathrm{cm}^{-1}$	PEO/LiTFSI	PEO/LiTFSI/3% h-BN	PEO/LiTFSI/6% h-BN	PEO/LiTFSI/9% h-BN
303 K	0.077	0.046	0.077	0.026
313 K	0.204	0.125	0.191	0.042
323 K	0.540	0.319	0.470	0.098
333 K	0.941	0.358	0.890	0.509
343 K	1.47	0.608	1.11	0.623
353 K	2.20	0.725	1.45	0.829

Table S1. The ionic conductivity of PEO/LiTFSI SPE with different contents of h-BN at different temperature.

$\pi \times 10^{-4} \text{ S cm}^{-1}$	PEO/LiTFSI/6%-h-BN	PEO/LiTFSI/6%-h-BN	PEO/LiTFSI/6%-h-BN
0×10 5 cm	EO:Li=20:1	EO:Li=32:1	EO:Li=44:1
303 K	0.137	0.077	0.027
313 K	0.569	0.191	0.055
323 K	1.257	0.470	0.155
333 K	1.348	0.890	0.621
343 K	1.510	1.11	0.762
353 K	1.520	1.45	0.929

Table S2. The ionic conductivity of PEO/LiTFSI/6%-h-BN with different OE:Li at different temperature.

Table S3. Comparison of electrochemical cycle performance of Li/PEO/LiTFSI/h-BN CPE/LiFePO₄

Electrolyte	Cycle	Discharge capacity		
Electrolyte	number	(cathode material:	Temperature	Reference
		LiFePO ₄)		
PEO/LiTFSI/h-BN CPE	140	143 mAh g ⁻¹ / 0.2 C	60 °C	This work
Lamia limid DEO salid				J. Hydrogen
Ionic liquid-PEO solid	50	140 mAh g ⁻¹ / 0.1 C	60 °C	Energy 2017, 42,
electrolyte				7212.
PIL-IL-SiO ₂ nanoplates	30	145.5 mAh g ⁻¹ / 0.1 C	60 °C	Nano Energy,
PEO polymer electrolyte				2017 , <i>33</i> , 110.
				Adv. Mater.
PEG-based polymer	20	140 mAh g ⁻¹ / 0.2 C	30 °C	Interfaces 2018,
electrolyte				1801445
PEG-to-PVP triblock gel	20	125 11 -1/010	(0.00	Polym. Chem.
polymer electrolytes	30	$135 \text{ mAn } g^{-1} / 0.1 \text{ C}$	60 °C	2018 , <i>9</i> , <i>5190</i>
Carbon quantum dots-	100	$100 \dots M_{1} = 1/1 C$	(0.9C)	Adv. Sci. 2018,
PEO solid electrolyte	100	100 mAn g ⁻¹ / 1 C	60 °C	1700996
normalidana DEO colid				Electrochimica
pyrrolidone-PEO solid				Acta 2019, 293,
electrolyte				25.

with other reported PEO-based electrolyte.

Table S4. The corresponding simulated impedance parameters in an equivalent circuit.

Battery sample	Before	cycle	After 5 cycles	
	$R_{b}(\Omega)$	$R_{ct}(\Omega)$	$R_{b}\left(\Omega ight)$	$R_{ct}(\Omega)$
PEO/LiTFSI/6% h-BN	20.94	83.34	30.69	433.8
PEO/LiTFSI	37.89	447.2	178.2	1651