Electronic Supplementary Information (ESI)

Quantum dot material engineering boosting quantum dot sensitized solar cells efficiency over 13%

Huashang Rao,^{ab} Mengsi Zhou,^{ac} Zhenxiao Pan,*ab and Xinhua Zhong*ab

^aKey Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China

^bGuangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China ^cSchool of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

*Corresponding authors

Email: zxpan@scau.edu.cn (for Z. P.)

zhongxh@scau.edu.cn (for X. Z.)

ZnSe thickness		$J_{\rm sc}({\rm mA}\cdot{\rm cm}^{-2})$	$V_{ m oc}\left({ m V} ight)$	FF	PCE (%)
1 ML	average	26.69	0.770	0.668	13.71±0.11
	champion	26.70	0.780	0.664	13.84
2ML	average	26.04	0.773	0.664	13.36±0.11
	champion	26.19	0.773	0.665	13.46
3ML	average	25.68	0.771	0.663	13.14±0.10
	champion	25.75	0.775	0.663	13.23

Fig. S1 J-V curves for ZCISe/ZnSe QDs with different ZnSe shell thickness.

Fig. S2 XRD patterns of ZCISe, and derived ZCISe/ZnSe QDs. Line XRD pattern corresponds to bulk tetragonal chalcopyrite CISe.

Fig. S3 ZnSe thickness dependent (a) UV-vis absorption, and (b) PL emission spectra.

QDs	$J_{\rm sc}$ (mA/cm ²)	$V_{\rm oc}({ m V})$	FF	PCE (%)
	26.25	0.752	0.635	12.54
ZCIS	26.10	0.748	0.633	12.35
ZCISE	26.45	0.746	0.632	12.57
INIVIC/11	26.09	0.754	0.635	12.49
	26.30	0.744	0.645	12.65
Average	26.22±0.17	0.750 ± 0.004	0.634±0.002	12.49±0.10
	27.00	0.769	0.664	13.79
70190/729	26.54	0.761	0.674	13.62
ZCISe/ZIISe	26.70	0.780	0.664	13.84
INIVIC/ II	26.68	0.765	0.676	13.69
	26.55	0.776	0.660	13.59
Average	26.69±0.19	0.770 ± 0.008	0.668 ± 0.007	13.71±0.11

Table S2. Photovoltaic parameters of ZCISe and ZCISe/ZnSe core/shell basedQDSCs under the illumination of one full sun intensity (100 mW/cm²).

Fig. S4 J-V curves of ZCISe and ZCISe/ZnSe core/shell QDs-based cells under the illumination of one full sun intensity (100 mW/cm²).

Certified photovoltaic performance of ZCISe/ZnSe QDSC by CPVT (National Centre of Supervision and Inspection on Solar Photovoltaic Products Quality, China)

Fig. S5 ZCISe and ZCISe/ZnSe sensitized TiO2 mesoporous film electrodes. It is noted that the measured film is consisted of $5.0 \mu m$ transparent P25 layer.

Fig. S6 Nyquist curves at different forward bias for (a) ZCISe, and (b) ZCISe/ZnSe based QDSCs.

Cells	$R_s \left(\Omega \cdot \mathrm{cm}^2\right)$	R_{CE} ($\Omega \cdot \mathrm{cm}^2$)	$C_{\mu} (\mathrm{mF} \cdot \mathrm{cm}^{-2})$	R_{rec} ($\Omega \cdot \mathrm{cm}^2$)	τ_n (ms)
ZCISe	4.66	1.80	19.30	37.91	731.6
ZCISe/ZnSe	4.55	2.36	18.06	62.30	1125.0

Table S3. Extracted EIS parameter values for ZCISe and ZCISe/ZnSe based cells atbias voltage of -0.65 V.