Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supporting information for manuscript

Bronze-type vanadium dioxide holey nanobelts as high performing cathode

material for aqueous aluminum-ion battery

Yi Cai, ⁺^a Sonal Kumar, ⁺^a Rodney Chua, ^a Vivek Verma, ^a Du Yuan, ^a Zongkui Kou, ^b Hao Ren, ^a Hemal Arora ^c and

Madhavi Srinivasan,* a,d

^a School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977,

Singapore

^b Department of Materials Science and Engineering, National University of Singapore, Engineering Drive 1,

117574, Singapore

^c United World College South East Asia, 528704, Singapore

^d Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive,

637553, Singapore

Fig. S1. (a) Nitrogen adsorption-desorption isotherm and (b) pore size distribution curve of the VO₂-B sample.

Fig. S2. XPS spectra analysis of the V 2p spectra in VO₂ material.

Fig. S3. Cyclic voltammetry (CV) curve of the VO_2 -B electrode cycled in 5 m Al(TOf)₃ electrolyte at 0.1 mV s⁻¹.

Fig. S4. Rate performance of the VO₂-B cathode in aqueous AIBs.

Fig. S5. Galvanostatic discharge/charge curves for aqueous VO_2 -B//Al cell at 100 mA g⁻¹.

Fig. S6. Comparison of energy densities and power densities reported for aqueous aluminiumion batteries.

Fig. S7. SEM images of the VO₂-B product after fully discharged.

Fig. S8. V 2p XPS spectrum of the fully discharged VO₂-B electrode.

Table S1 Comparison of the electrochemical performance of VO_2 nanosheets with the cathode

Material	Electrochemical performance	Reference
Our work	A capacity of 234 mAh g ⁻¹ at 150 mA g ⁻¹	
	An initial capacity of 73.3 mAh g ⁻¹ at 1 A g ⁻¹ with a capacity retention of 77.2% over 1000 cycles	
Copper-hexacyanoferrate (KCu[Fe(CN) ₆]·xH ₂ O)	60 mAh g ⁻¹ at 100 mA g ⁻¹	1
	An initial capacity of 41 mAh g ⁻¹ at 400 mA g ⁻¹ with a capacity retention of 55% after 1000 cycles.	
FeFe(CN) ₆	An initial capacity of 116.29 mAh g^{-1} at 150 mA g^{-1} with a capacity retention of 66.3% after 100 cycles.	2
MnO ₂	An initial capacity of 109 mAh g ⁻¹ at 20 mA g ⁻¹ with a capacity retention of 61.5% after 60 cycles.	3
TiO ₂	A capacity of around 180 mAh g ⁻¹ at 50 mA g ⁻¹	4
Graphene	A capacity of around 90 mAh g ⁻¹ at 500 mA g ⁻¹	5
V_2O_5	A capacity of around 140 mAh g ⁻¹ at 60 mA g ⁻¹	6
Bi ₂ O ₃	A capacity of around 71.1 mAh g^{-1} at 1.5 A g^{-1} with a capacity retention of almost 0% after 20 cycles.	7

materials reported for aqueous aluminum ion batteries.

	Pristine	Discharge	Charge
a (Å)	12.055(2)	12.047(3)	12.048(5)
b (Å)	3.6928(7)	3.696(1)	3.694(1)
c (Å)	6.421(1)	6.429(1)	6.426(1)
β	107.04(2)	106.97(2)	106.97(3)
V (Å ³)	273.3(1)	273.8(1)	273.5(1)
R _{wp}	5.742	6.094	6.071

Table S2 Lattice parameters of the VO₂-B electrode at different states.

Supplementary Reference:

- 1. S. Liu, G. Pan, G. Li and X. Gao, *J Mater. Chem. A*, 2015, **3**, 959-962.
- A. Zhou, L. Jiang, J. Yue, Y. Tong, Q. Zhang, Z. Lin, B. Liu, C. Wu, L. Suo and Y.-S. Hu, ACS Appl. Mater. Interfaces, 2019, 11, 41356-41362.
- J. Joseph, J. Nerkar, C. Tang, A. Du, A. P. O'Mullane and K. Ostrikov, *ChemSusChem*, 2019, 12, 3753-3760.
- M. Kazazi, Z. A. Zafar, M. Delshad, J. Cervenka and C. Chen, *Solid State Ion.*, 2018, 320, 64-69.
- 5. M. Krishnamoorthy and N. Jha, *ACS Sustain. Chem. Eng.*, 2019, 7, 8475-8489.
- J. González, F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela and J. Tirado, RSC Adv., 2016, 6, 62157-62164.
- 7. S. Nandi and S. K. Das, *Solid State Ion.*, 2020, **347**, 115228.