Strain effect on the catalytic activities of B- and B/N-doped black phosphorene

for electrochemical conversion of CO to valuable chemicals

Zhe Chen,^{a,b} Xin Liu,^c Jingxiang Zhao,^{a,*} Yan Jiao,^c Lichang Yin^{b,d*}

^a College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University,

Harbin, 150025, China

^b Shenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Sciences, Shenyang, 110016, China

^c Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia

^d Department of Physics and Electronic Information, Huaibei Normal University, Anhui Huaibei, 235000, China

* To whom correspondence should be addressed. Email: xjz_hmily@163.com (JZ); lcyin@imr.ac.cn (LY)

Complement to Computational Detail

The adsorption energy (E_{ads}) of the intermediate species of CO reduction on the designed B@BP and B-N@BP catalysts was calculated based on the equation: $E_{ads} = E_{total} - E_{substrate} - E_{adsorbate}$, where E_{total} , $E_{substrate}$ and $E_{adsorbate}$ represent the total energies of the systems containing the substrate and adsorbate, the substrate, and the adsorbate, respectively. According to this definition, a more negative adsorption energy indicates a stronger adsorption.

The Gibbs reaction free energy change (ΔG) of each elementary step during the CO reduction process was calculated by using the computational hydrogen electrode (CHE) model proposed by Nørskov *et al.*¹ The chemical potential of the proton-electron pair in aqueous solution is related to that of one-half of the chemical potential of an isolated hydrogen molecule. Based on this model, the ΔG value can be obtained by the formula: $\Delta G = \Delta E + \Delta ZPE - T\Delta S + \Delta G_{pH} + eU$, where ΔE is the reaction energy of reactant and product species adsorbed on the catalyst directly obtained from DFT computations; ΔZPE and ΔS are the changes between the adsorbed species and the gas phase molecules in zero point energies and entropy at 298.15 K, which can be calculated from the vibrational frequencies. ΔG_{pH} is the free energy correction of pH, and can be calculated by: $\Delta G_{pH} = K_BT \times pH \times ln10$. Notably, the pH value was set to be zero in this work for simplicity; U was the applied potential.

Table S1. The calculated cohesive energies (E_{coh} , eV per atom) and formation energies (E_{f} , eV) of B@BP with different compressive strain along the armchair direction.

Strain	0%	3%	5%	7%
Ecoh	3.613	3.611	3.607	3.604
E_{f}	0.806	0.887	1.068	1.257

Table S2. The calculated adsorption energies (E_{ads} , eV) of CO molecule and CH_2 species on B@BP with different compressive strain along the armchair direction.

Strain	0%	3%	5%	7%
E _{ads} (CO)	-1.27	-1.32	-1.34	-1.36
E _{ads} (CH ₂)	-4.38	-3.78	-3.78	-3.77

Table S3. The calculated cohesive energies (E_{coh} , eV per atom), formation energies (E_{f} , eV) and distances between B and N dopants (L_d , Å) of para-B-N@BP with different compressive strain along the armchair direction.

Strain	0%	3%	5%	7%
E _{coh}	3.631	3.630	3.628	3.623
E_{f}	1.566	1.590	1.726	1.937
L_d	4.19	4.06	3.96	3.88

Table S4. The calculated adsorption free energy (eV) of proton (*H) at B sites on

B@BP and B-N@BP with different compressive strain.

Strain	0%	3%	5%	7%
B@BP	-0.39	-0.47	-0.51	-0.54
B-N@BP	-0.38	-0.47	-0.51	-0.55

Table S5. The calculated adsorption energies (eV) of water (H₂O) at active sites of

designed catalysts with different compressive strain.

Strain	0%	3%	5%	7%
B site in B@BP	-0.80	-0.81	-0.81	-0.91
B site in B-N@BP	-0.90	-0.91	-0.91	-0.86
N site in B-N@BP	-0.16	-0.19	-0.18	-0.16

Fig. S1 The variations of temperature and energy versus the time for AIMD simulations of (a) B@BP without strain, (b) B@BP with 7% compressive strain, (c) para-B-N@BP without strain and (d) para-B-N@BP with 7% compressive strain, which is run under 300 K for 5 ps with a time step of 2 fs. Schematic diagrams of these two atomic configurations after dynamics simulation (top and side views) are also given.

Fig. S2 The atomic structures of $^{*}CH_{2}$ species adsorbed on B@BP with different compressive strain.

Fig. S3 The deformation charge density of ${}^{*}CH_{2}$ species adsorbed on B@BP (a) without strain, (b) with 3% compressive strain before relaxation and (c) with 3% compressive strain after full relaxation. The isosurface value of the charge density plots is set to be 0.004 e Å⁻³. For clarity, only the charge accumulation region (in yellow) was shown in this figure.

Fig. S4 Local density of states (LDOS) of B@BP with the $^{*}CH_{2}$ species under different compressive strain (from 0% to 7%, respectively).

Fig. S5 The detailed kinetic energy diagram of CO reduction towards C_1 products on B@BP with 7% compressive strain, and the structures of transition state are also given.

Fig. S6 The detailed free energy pathway of C-C coupling on para-B-N@BP with 7% compressive strain. The relevant atomic structures are also given.

Fig. S7 (a) Top view and (b) side view of the difference charge density plots for COdimer on para-B-N@BP with 7% compressive strain. The isosurface value is set to be 0.008 e Å⁻³, the charge accumulated and depleted regions are shown in yellow and cyan, respectively.

Fig. S8 The detailed kinetic energy diagram of CO reduction towards C_2 product on B-N@BP with 7% compressive strain, and the structures of transition state are also given.

References

(1) J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *J. Phys. Chem. B*, 2004, **108**, 17886-17892.