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Complement to Computational Detail 

The adsorption energy ( ) of the intermediate species of CO reduction on the 𝐸𝑎𝑑𝑠

designed B@BP and B-N@BP catalysts was calculated based on the equation: 

, where ,  and  𝐸𝑎𝑑𝑠 =  𝐸𝑡𝑜𝑡𝑎𝑙 ‒  𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 ‒  𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 𝐸𝑡𝑜𝑡𝑎𝑙 𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒

represent the total energies of the systems containing the substrate and adsorbate, the 

substrate, and the adsorbate, respectively. According to this definition, a more negative 

adsorption energy indicates a stronger adsorption.

The Gibbs reaction free energy change ( ) of each elementary step during the ∆𝐺

CO reduction process was calculated by using the computational hydrogen electrode 

(CHE) model proposed by Nørskov et al.1 The chemical potential of the proton-electron 

pair in aqueous solution is related to that of one-half of the chemical potential of an 

isolated hydrogen molecule. Based on this model, the  value can be obtained by the ∆𝐺

formula: , where  is the reaction energy ∆𝐺 =  ∆𝐸 +  ∆𝑍𝑃𝐸 ‒  𝑇∆𝑆 +  ∆𝐺𝑝𝐻 +  𝑒𝑈 ∆𝐸

of reactant and product species adsorbed on the catalyst directly obtained from DFT 

computations;  and  are the changes between the adsorbed species and the gas ∆𝑍𝑃𝐸 ∆𝑆

phase molecules in zero point energies and entropy at 298.15 K, which can be 

calculated from the vibrational frequencies.  is the free energy correction of , ∆𝐺𝑝𝐻 𝑝𝐻

and can be calculated by: . Notably, the  value was set ∆𝐺𝑝𝐻 = 𝐾𝐵𝑇 × 𝑝𝐻 × 𝑙𝑛10 𝑝𝐻

to be zero in this work for simplicity;  was the applied potential. 𝑈



Table S1. The calculated cohesive energies (Ecoh, eV per atom) and formation energies 

(Ef, eV) of B@BP with different compressive strain along the armchair direction.

Strain 0% 3% 5% 7%
Ecoh 3.613 3.611 3.607 3.604
Ef 0.806 0.887 1.068 1.257

Table S2. The calculated adsorption energies (Eads, eV) of CO molecule and CH2 

species on B@BP with different compressive strain along the armchair direction. 

Strain 0% 3% 5% 7%
Eads(CO) -1.27 -1.32 -1.34 -1.36
Eads(CH2) -4.38 -3.78 -3.78 -3.77

Table S3. The calculated cohesive energies (Ecoh, eV per atom), formation energies (Ef, 

eV) and distances between B and N dopants (Ld, Å) of para-B-N@BP with different 

compressive strain along the armchair direction.

Strain 0% 3% 5% 7%
Ecoh 3.631 3.630 3.628 3.623
Ef 1.566 1.590 1.726 1.937
Ld 4.19 4.06 3.96 3.88

Table S4. The calculated adsorption free energy (eV) of proton (*H) at B sites on 

B@BP and B-N@BP with different compressive strain.

Strain 0% 3% 5% 7%
B@BP -0.39 -0.47 -0.51 -0.54

B-N@BP -0.38 -0.47 -0.51 -0.55

Table S5. The calculated adsorption energies (eV) of water (H2O) at active sites of 

designed catalysts with different compressive strain.

Strain 0% 3% 5% 7%
B site in B@BP -0.80 -0.81 -0.81 -0.91

B site in B-N@BP -0.90 -0.91 -0.91 -0.86
N site in B-N@BP -0.16 -0.19 -0.18 -0.16



Fig. S1 The variations of temperature and energy versus the time for AIMD simulations 

of (a) B@BP without strain, (b) B@BP with 7% compressive strain, (c) para-B-N@BP 

without strain and (d) para-B-N@BP with 7% compressive strain, which is run under 

300 K for 5 ps with a time step of 2 fs. Schematic diagrams of these two atomic 

configurations after dynamics simulation (top and side views) are also given.

Fig. S2 The atomic structures of *CH2 species adsorbed on B@BP with different 

compressive strain.



Fig. S3 The deformation charge density of *CH2 species adsorbed on B@BP (a) without 

strain, (b) with 3% compressive strain before relaxation and (c) with 3% compressive 

strain after full relaxation. The isosurface value of the charge density plots is set to be 

0.004 e Å-3. For clarity, only the charge accumulation region (in yellow) was shown in 

this figure.

Fig. S4 Local density of states (LDOS) of B@BP with the *CH2 species under different 

compressive strain (from 0% to 7%, respectively). 



Fig. S5 The detailed kinetic energy diagram of CO reduction towards C1 products on 

B@BP with 7% compressive strain, and the structures of transition state are also given. 

  

Fig. S6 The detailed free energy pathway of C-C coupling on para-B-N@BP with 7% 

compressive strain. The relevant atomic structures are also given.



Fig. S7 (a) Top view and (b) side view of the difference charge density plots for CO-

dimer on para-B-N@BP with 7% compressive strain. The isosurface value is set to be 

0.008 e Å-3, the charge accumulated and depleted regions are shown in yellow and cyan, 

respectively.

Fig. S8 The detailed kinetic energy diagram of CO reduction towards C2 product on B-

N@BP with 7% compressive strain, and the structures of transition state are also given.
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