Electronic Supplementary Information:

Solvothermal Synthesis of Sn₃N₄ as a High Capacity Sodium-Ion Anode: Theoretical and Experimental Study of its Storage Mechanism

Samuel D. S. Fitch,^a Giannantonio Cibin,^b Steven P. Hepplestone,^c Nuria Garcia-Araez^a and Andrew L. Hector^a

^a School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK

^b Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK

^c School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL UK

Contents

Fig. S1 *Ex situ* diffraction patterns of microcrystalline Sn_3N_4 electrodes during the initial sodiation reaction in Na half-cells. The electrodes have been prepared without homogenising the ink. Dashed red lines indicate Sn reflections observed at lower potentials during the initial reduction.

Fig. S2 Rietveld fits for microcrystalline Sn_3N_4 (top, one phase) and nanocrystalline Sn_3N_4 (bottom, two phases). (+) Indicate collected data points. Upper continuous line is the calculated profile and lower continuous line is the difference. Tick marks show allowed reflection positions for Sn_3N_4 .

Table S1 Fitted parameters from the Rietveld fit to the XRD patterns for nanocrystalline and microcrystalline Sn_3N_4 .

Table S2 Results of the EXAFS fit for nanocrystalline Sn_3N_4 and microcrystalline Sn_3N_4 .

Table S3 The formation energy, E_f , of various reactions of Na insertion and substitution in bulk Sn₃N₄ using PBE functional.

Table S4 The formation energy, E_f , of various reactions of Na insertion and substitution on the surface of Sn₃N₄ using PBE functional.

Fig. S3 A ball and stick representation of the Sn_3N_4 surface structure. The large purple spheres are Sn; the smaller purple spheres are nitrogen. The Na interstitials are shown with green dots. The two substitutional sites for the substitution of Sn by Na are highlighted with orange dots.

Fig. S4 Derivative capacity plot computed from the initial galvanostatic cycle of microcrystalline (Left) and nanocrystalline (Right) Sn_3N_4 at a specific current of 50 mA g⁻¹.

Fig. S5 (a) Sn-K edge XANES of known Sn standards and pristine microcrystalline Sn_3N_4 electrode. (b) Calibration of Sn-K edge energies *vs.* oxidation state.

Table S5 Average oxidation state, as evaluated from the Sn K-edge energies, of microcrystalline Sn_3N_4 electrodes as a function of cell potential during reduction and oxidation.

Fig. S6 Comparison of the XRD of the pristine microcrystalline Sn_3N_4 electrode and the ICSD database pattern of CrO_2 and NiO.

Fig. S7 Comparison of the XRD of the microcrystalline Sn_3N_4 electrode as a function of cell potential and the ICSD database pattern of Sn_3N_4 , Sn and SnO_2 .

Fig. S8 Fourier transforms of K^3 -weighted Sn K-edge EXAFS during initial and final states of the first reduction of microcrystalline Sn₃N₄. The data of Na₁₅Sn₄ and Na₄Sn from the ICSD database is also included for comparison. Grey vertical lines indicate the radial distance of Sn-N bonds with Sn in tetrahedral or octahedral sites, and the pink vertical line indicate Na-Sn bond distance.

Fig. S9 Ex-situ Raman spectrum of a microcrystalline Sn_3N_4 electrode cycled to 10 mV in a Na half-cell. The spectrum does not show any characteristic bands that could be ascribed to NaN₃ or Na₂N₂ formation.

Fig. S1 *Ex situ* diffraction patterns of microcrystalline Sn_3N_4 electrodes during the initial sodiation reaction in Na half-cells. The electrodes have been prepared without homogenising the ink. Dashed red lines indicate Sn reflections observed at lower potentials during the initial reduction.

Fig. S2 Rietveld fits for microcrystalline Sn_3N_4 (top, one phase) and nanocrystalline Sn_3N_4 (bottom, two phases). (+) Indicate collected data points. Upper continuous line is the calculated profile and lower continuous line is the difference. Tick marks show allowed reflection positions for Sn_3N_4 .

Material	Material "Microcrystalline"		"Nanocrystalline" Sn ₃ N ₄	
Parameter	Sn ₃ N ₄	Minor component	Major Component	
R _{wp} / %	5.0	9.4		
R _p / %	3.4	7.4		
Wt %	100	13.2(4)	86.8(2)	
a / Å	9.0549(2)	9.0514(4)	9.139(2)	
Crystallite size / nm	310(40)	137(13)	5.950(9)	
Sn1 ($^{1}/_{8}$, $^{1}/_{8}$, $^{1}/_{8}$) U _{iso} / Å ²	0.0231(6)	0.0102(10)	0.0102(10)	
Sn2 (1/2,1/2,1/2) U _{iso} / Å ²	0.0234(5)	0.0102(10)	0.0102(10)	
N (x,x,x) x-value	0.2600(6)	0.263(3)	0.261(2)	
N (x,x,x) U _{iso} / Å ²	0.008(2)	0.02	0.02	

Table S1 Fitted parameters from the Rietveld fit to the XRD patterns for nanocrystalline and microcrystalline Sn_3N_4 .

Table S2 Results of the EXAFS fit for nanocrystalline Sn_3N_4 and microcrystalline Sn_3N_4 .

Coordination	Microcrystalline EXAFS data analysis		Nanocrystalline EXAFS data analysis		Model crystallographic data
Sn(1)-N (tetrahedral)	$R_r/$ Å	2.028 ± 0.019	$R_r/$ Å	2.077 ± 0.039	2.105
	$\sigma_{\Gamma}^2/{ m \AA}$	0.0030 ± 0.0021	$\sigma_{\Gamma}^2/{ m \AA}$	0.0043 ± 0.0029	-
Sn(2)-N (octahedral)	<i>R_r</i> /Å	2.137 ± 0.015	R _r ∕Å	2.182 ± 0.0234	2.177
	$\sigma_{\Gamma}^2/{ m \AA}$	0.0070 ± 0.0029	$\sigma_{\Gamma}^2/{ m \AA}$	0.0070 ± 0.0055	-

Atom/Defect	Site	Coordinates	E_f in eV	Description
type	label		PBE (HSE06)	
Sn _{tet}	8a	1/8,1/8,1/8	-	Tetrahedral Sn sites
Snoct	16d	1/2,1/2,1/2	-	Octahedral Sn sites
Ν	32e	1/4, 1/4, 1/4	-	N sites
Interstitial	48f	$0.35, \frac{1}{8}, \frac{1}{8}$	3.76	Tetrahedral Na interstitial edge linking to one
			(3.37)	SnN ₆ octahedron and one SnN ₄ tetrahedron.
Interstitial	16c	1/2,0,1/2	1.68	Octahedral Na interstitial face linking to one
				SnN ₄ tetrahedron and edge linking to two
				SnN ₆ octahedra.
Interstitial	32e	0.4,0.1,0.6	3.76	Tetrahedral Na interstitial face linking to two
				SnN_6 octahedra and edge linking to one SnN_4
				tetrahedron.
Interstitial	48f	1/8,1/8,3/8	3.78	Tetrahedral Na interstitial face linking to two
				SnN ₆ octahedra and edge linking to one SnN ₄
				tetrahedron.
Interstitial	16c	¹ /4, 0, ¹ /4	2.36	Octahedral Na interstitial face linking to one
				SnN4 tetrahedron and edge linking to two
				SnN ₆ octahedra. Initial structure resulted in
				distortion of Sn ₃ N ₄ lattice.
Interstitial	16c	1/2, 1/4 ,3/4	-0.53	Octahedral Na interstitial face linking to two
				SnN ₄ tetrahedra edge linking to four SnN ₆
				octahedra. Unit cell doubled along a so the
				$\frac{1}{4},\frac{1}{4},\frac{3}{4}$ interstitial site becomes $\frac{1}{2},\frac{1}{4},\frac{3}{4}$ based
				on the standard unit cell
Substitution	16d	0,0,0	4.47	Substitution of Na into one octahedral Sn
				site.
Substitution	8a	1/8, 1/8, 1/8	4.33	Substitution of Na into one tetrahedral Sn
				site.
Substitution	32e	1/4, 1/4, 1/4	8.68	Substitution of Na into one N site.
Double	32e	0.4,0.1,0.6	1.89	Octahedral Na interstitial face linking to one
interstitial	&	&		SnN ₄ tetrahedron and edge linking to two
	16c	$\frac{1}{2}$, 0, $\frac{1}{2}$		SnN ₆ octahedra. & Octahedral Na interstitial
				face linking to one SnN4 tetrahedron and
				edge linking to two SnN_6 octahedra.
Double	16c	1/2,0,1/2	1.28	Octahedral Na interstitial face linking to one
interstitial	&	&		SnN ₄ tetrahedron and edge linking to two
	16c	¹ /4, 0 ¹ /4		SnN ₆ octahedra & Octahedral Na interstitial
				face linking to one SnN ₄ tetrahedron and
				edge linking to two SnN_6 octahedra. Initial
				structure.

Table S3 The formation energy, E_f , of various reactions of Na insertion and substitution in bulk Sn₃N₄ using PBE functional. The values of formation energies are given per Na atom.

Table S4 The formation energy, E_f , of various reactions of Na insertion and substitution on the surface of Sn_3N_4 using PBE functional. The slab modelled was 14 Å in thickness and consisted of a 1x1 surface reconstruction. The values of formation energies are given per Na atom.

Atom/Defect type	E_{f}	Description
	PBE	
	(eV)	
Na adsorbent	-3.58	Na atom adsorbed to surface of Sn ₃ N ₄
		slab (above tetrahedral site)
Interstitial	-3.36	Na interstitial X ~ 2 Å below the surface
Interstitial	-1.74	Na interstitial X \sim 7Å below the surface
Na substitution for	-1.90	Na substituted for surface tetrahedral Sn
Sn		
Na substitution for	-0.59	Na substituted for subsurface tetrahedral Sn
Sn		(below surface monolayer)

Fig. S3. A ball and stick representation of the Sn_3N_4 surface structure. The large purple spheres are Sn; the smaller purple spheres are nitrogen. The Na interstitials are shown with green dots. The two substitutional sites for the substitution of Sn by Na are highlighted with orange dots.

Fig. S4 Derivative capacity plot computed from the initial galvanostatic cycle of microcrystalline (Left) and nanocrystalline (**Right**) Sn_3N_4 at a specific current of 50 mA g⁻¹.

Fig. S5 (a) Sn-K edge XANES of known Sn standards and pristine microcrystalline Sn_3N_4 electrode. (b) Calibration of Sn-K edge energies *vs*. oxidation state.

Sample vs. (Na ⁺ /Na)		Oxidation state (Sn)	Sn K-edge energy
	Pristine	3.7	29205.5
reduction	1.6 V	3.1	29204.4
	1.2 V	2.9	29203.8
	1.0 V	2.5	29203.4
	0.5 V	1.3	29201.2
	10 mV	-0.1	29199.6
oxidation	0.1 V	0.9	29200.7
	0.75 V	1.5	29301.3
	1.5 V	2.8	29203.9
	2.5 V	3.5	29205.2

Table S5 Average oxidation state, as evaluated from the Sn K-edge energies, of microcrystalline Sn_3N_4 electrodes as a function of cell potential during reduction and oxidation.

Fig. S6 Comparison of the XRD of the pristine microcrystalline Sn_3N_4 electrode and the ICSD database pattern of CrO_2 and NiO.

Fig. S7 Comparison of the XRD of the microcrystalline Sn_3N_4 electrode as a function of cell potential and the ICSD database pattern of Sn_3N_4 (green) Sn (orange) and SnO_2 (red).

Fig. S8 Fourier transforms of K^3 -weighted Sn K-edge EXAFS during initial and final states of the first reduction of microcrystalline Sn₃N₄. The data of Na₁₅Sn₄ and Na₄Sn from the ICSD database is also included for comparison. Grey vertical lines indicate the radial distance of Sn-N bonds with Sn in tetrahedral or octahedral sites, and the pink vertical line indicate Na-Sn bond distance.

Fig. S9 Ex-situ Raman spectrum of a microcrystalline Sn_3N_4 electrode cycled to 10 mV in a Na half-cell. The spectrum does not show any characteristic bands that could be ascribed to NaN₃ or Na₂N₂ formation.